Facial selectivities in the Diels-Alder reactions of 5-substituted 1,3-cyclopentadienes with a variety of dienophiles are predicted reliably at the ab initio HF/6-31G level. The ranges of activation energies for syn addition are large relative to those for anti addition, which are all similar to the activation energy for cyclopentadiene itself. Partitioning the activation energy into diene deformation, dienophile deformation, and diene-dienophile interaction energies shows that the major factor in determining facial selectivity is in the energy required to deform the diene into its transition state geometry. Deformation of the 5-fluoro-, 5-hydroxy-, and 5-amino-1,3-cyclopentadienes into their syn transition state geometries is predicted to require less energy than deformation of cyclopentadiene itself, which is in accord with experimental observation of syn addition with these dienes. The first definition of an ab initio steric factor is presented which correlates very well with syn activation energies. This indicates that facial selectivity with these dienes is primarily due to steric hindrance between the dienophile and the plane-nonsymmetric groups on the diene. However, we have also identified a significant lone pair-lone pair interaction with the reacting nitrogens when the dienophile is 1,2,4-triazoline-3,5-dione.
A computational examination of the four modes of addition in the Diels-Alder reactions of 3-substituted cyclopropene derivatives (substituents: BH(2), CH(3), SiH(3), NH(2), PH(2), OH, SH, F, and Cl) with butadiene have been carried out at the B3LYP/6-31++G(d)//HF/6-31++G(d) level. The degree of stabilization of these derivatives at the ground state correlates with the electronegativity of the substituent. This attenuation of reactivity and differences in steric interactions are the only factors needed to explain both the high facial selectivity and the differences in the endo-exo selectivity seen in these reactions. Furthermore, evidence is presented that indicates that stabilization by an interaction involving the syn C-3 hydrogen of cyclopropene and butadiene is small or irrelevant in controlling the endo-exo selectivity of the Diels-Alder reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.