Magnetic digital microfluidics (MDM) manipulates fluids in the form of droplets on an open substrate, and incorporates surface energy traps (SETs) to facilitate the droplet manipulation. Conventional MDM devices are fabricated monolithically, which makes it difficult to modify the device configuration without completely overhauling the original design. In this paper, we present a modular MDM architecture that enables rapid on-demand configuration and re-configuration of MDM platforms for customized bioanalyses. Each modular component contains a SET and a Lego-like antistud that fits onto a base board with Lego-like studs. We illustrate the versatility of the modular MDM architecture in biomarker sensing, pathogen identification, antibiotic resistance determination, and biochemical quantification by demonstrating immunoassays, phenotypical assays and enzymatic assays on various modular MDM platforms configured on demand to accomplish the fluidic operations required by assorted bioanalytical assays. The modular MDM architecture promises great potential for point-of-care diagnostics by offering on-demand customization of testing platforms for various categories of diagnostic assays. It also provides a new avenue for microfluidic assay development with its high configurability which would significantly reduce the time and cost of the development cycle.
Magnetic digital microfluidics uses magnetic force to manipulate droplets on a Teflon‐coated substrate through the added magnetic particles. To achieve a wide range of droplet manipulation, hydrophilic patterns, known as surface energy traps, are introduced onto the Teflon‐coated hydrophobic substrate. However, the Teflon‐coated substrate is difficult to modify because it is nonwettable, and existing techniques for patterning surface energy traps have many limitations. Inspired by the mussel adhesion mechanism, we use polydopamine, a bioinspired substance that adheres strongly to almost any materials, to pattern surface energy traps on the Teflon‐coated substrate with a great ease. We have optimized the polydopamine coating protocol and characterized the surface properties of the polydopamine surface energy traps. Droplet operations including particle extraction, liquid dispensing, liquid shaping, and cross‐platform transfer have been demonstrated on the polydopamine surface energy trap‐enabled magnetic digital microfluidic platform in both single‐plate and two‐plate configurations. Furthermore, the detection of hepatitis B surface antigen using ELISA has been demonstrated on the new magnetic dgitial microfluidic platform. This new bioinspired magnetic digital microfluidic platform is easy to fabricate and operate, showing a great potential for point‐of‐care applications.
Polydopamine (PDA) is a bioinspired material with tremendous potential for applications involving surface modifications. By simply immersing the substrate in the dopamine monomer solution, we are able to apply a hydrophilic and biofunctional PDA coating that adheres strongly to any surface, including (super)hydrophobic surface, with unprecedented ease. Using PDA, almost any materials can be immobilized on the surface in a single step by mixing them with the dopamine monomer solution. This review provides a comprehensive coverage of the applications of PDA in the device fabrication, surface modification, and biofunctionalization of biomedical microfluidic devices. While discussing the advantages and limitations of PDA, we pay special attention to its unique properties that specifically benefit biomedical microfluidic devices. We also discuss other potential applications of PDA beyond the current development. Through this review, we hope to promote PDA and encourage a broader adoption of PDA by the microfluidic community.
3D printing via vat photopolymerization (VP) is a highly promising approach for fabricating magnetic soft millirobots (MSMRs) with accurate miniature 3D structures; however, magnetic filler materials added to resin either strongly interfere with the photon energy source or sediment too fast, resulting in the nonuniformity of the filler distribution or failed prints, which limits the application of VP. To this end, a circulating vat photopolymerization (CVP) platform that can print MSMRs with high uniformity, high particle loading, and strong magnetic response is presented. After extensive characterization of materials and 3D printed parts, it is found that SrFe12O19 is an ideal magnetic filler for CVP and can be printed with 30% particle loading and high uniformity. By using CVP, various tethered and untethered MSMRs are 3D printed monolithically and demonstrate the capability of reversible 3D‐to‐3D transformation and liquid droplet manipulation in 3D, an important task for in vitro diagnostics that are not shown with conventional MSMRs. A fully automated liquid droplet handling platform that manipulates droplets with MSMR is presented for detecting carbapenem antibiotic resistance in hazardous biosamples as a proof of concept, and the results agree with the benchmark.
Carbapenemase-producing Enterobacteriaceae (CPE) are a group of drug-resistant Gram-negative pathogens that are classified as a critical threat by the World Health Organization (WHO). Conventional methods of detecting antibiotic-resistant pathogens do not assess the resistance mechanism and are often time-consuming and laborious. We have developed a magnetic digital microfluidic (MDM) platform, known as MDM Carba, for the identification of CPE by measuring their ability to hydrolyze carbapenem antibiotics. MDM Carba offers the ability to rapidly test CPE and reduce the amount of reagents used compared with conventional phenotypic testing. On the MDM Carba platform, tests are performed in droplets that function as reaction chambers, and fluidic operations are accomplished by manipulating these droplets with magnetic force. The simple droplet-based magnetic fluidic operation allows easy system automation and simplified hands-on operation. Because of the unique “power-free” operation of MDM technology, the MDM Carba platform can also be operated manually, showing great potential for point-of-care testing in resource-limited settings. We tested 27 bacterial isolates on the MDM Carba platform, and the results showed sensitivity and specificity that were comparable to those of the widely used Carba NP test. MDM Carba may shorten the overall turnaround time for CPE identification, thereby enabling more timely clinical decisions for better clinical outcomes. MDM Carba is a technological platform that can be further developed to improve diagnostics for other types of antibiotic resistance with minor modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.