Metastatic melanoma remains the deadliest of all skin cancers with a survival rate at five years of less than 15%. MT1-MMP is a membrane-associated matrix metalloproteinase that controls pericellular proteolysis and is an important, invasion-promoting, pro-tumorigenic MMP in cancer. We show that deregulation of MT1-MMP expression happens as early as the transition from nevus to primary melanoma and continues to increase during melanoma progression. Furthermore, MT1-MMP expression is associated with poor melanoma patient outcome, underscoring a pivotal role of MT1-MMP in melanoma pathogenesis. We demonstrate that MT1-MMP is directly required for melanoma cells to metastasize, as cells deprived of MT1-MMP fail to form distant metastasis in an orthotopic mouse melanoma model. We show that MT1-MMP affects cell invasion by activating its target MMP2. Importantly, we demonstrate, for the first time, that activation of MMP2 by MT1-MMP is required to sustain RAC1 activity and promote MT1-MMP-dependent cell motility. These data highlight a novel MT1-MMP/MMP2/RAC1 signaling axis in melanoma that may represent an intriguing molecular target for the treatment of invasive melanoma.
Mutation in the prion gene PRNP accounts for 10 -15% of human prion diseases. However, little is known about the mechanisms by which mutant prion proteins (PrPs) cause disease. Here we investigated the effects of 10 different pathogenic mutations on the conformation and ligand-binding activity of recombinant human PrP (rPrP). We found that mutant rPrPs react more strongly with N terminus-specific antibodies, indicative of a more exposed N terminus. The N terminus of PrP contains a glycosaminoglycan (GAG)-binding motif. Binding of GAG is important in prion disease. Accordingly, all mutant rPrPs bind more GAG, and GAG promotes the aggregation of mutant rPrPs more efficiently than wild-type recombinant normal cellular PrP (rPrP C ). Furthermore, point mutations in PRNP also cause conformational changes in the region between residues 109 and 136, resulting in the exposure of a second, normally buried, GAG-binding motif. Importantly, brainderived PrP from transgenic mice, which express a pathogenic mutant with nine extra octapeptide repeats, also binds more strongly to GAG than wild-type PrP C . Thus, several rPrPs with distinct pathogenic mutations have common conformational changes, which enhance binding to GAG. These changes may contribute to the pathogenesis of inherited prion diseases.genetics ͉ structure
The Notch pathway is an evolutionary conserved signaling cascade that has an essential role in melanoblast and melanocyte stem cell homeostasis. Notch signaling is emerging as a key player in melanoma, the most deadly form of skin cancer. In melanoma, Notch1 is inappropriately reactivated and contributes to melanoma tumorigenicity. Here, we propose a novel mechanism by which Notch1 promotes the disease. We found that Notch1 directly regulates the transcription of neuregulin1 (NRG1) by binding to its promoter region. NRG1 is the ligand for ERBB3 and 4, members of the Epidermal Growth Factor family of receptors that are involved in the genesis and progression of a number of cancers. Notch1 and NRG1 expression are associated in melanoma and inhibition of NRG1 signaling leads to melanoma cell growth inhibition and tumor growth delay. Mechanistically, these effects are associated with the inhibition of the PI3Kinase/Akt signaling pathway and with the accumulation of p27Kip1. On the other end, addition of recombinant NRG1 can partially restore melanoma cell growth that is inhibited by Notch1 ablation. Taken together, our findings underline a new, previously undescribed autocrine signaling loop between Notch1 and NRG1 that controls melanoma growth and provide experimental evidence that the targeting of Notch and ERBB signaling may represent a novel potential therapeutic approach in melanoma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.