Previous studies have shown that murine macrophages immunostimulated with interferon gamma and Escherichia coli lipopolysaccharide synthesize NO2-, NO3-, and citrulline from L-arginine by oxidation of one of the two chemically equivalent guanido nitrogens. The enzymatic activity for this very unusual reaction was found in the 100,000g supernatant isolated from activated RAW 264.7 cells and was totally absent in unstimulated cells. This activity requires NADPH and L-arginine and is enhanced by Mg2+. When the subcellular fraction containing the enzyme activity was incubated with L-arginine, NADPH, and Mg2+, the formation of nitric oxide was observed. Nitric oxide formation was dependent on the presence of L-arginine and NADPH and was inhibited by the NO2-/NO3- synthesis inhibitor NG-monomethyl-L-arginine. Furthermore, when incubated with L-[guanido-15N2]arginine, the nitric oxide was 15N-labeled. The results show that nitric oxide is an intermediate in the L-arginine to NO2-, NO3-, and citrulline pathway. L-Arginine is required for the activation of macrophages to the bactericidal/tumoricidal state and suggests that nitric oxide is serving as an intracellular signal for this activation process in a manner similar to that very recently observed in endothelial cells, where nitric oxide leads to vascular smooth muscle relaxation [Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988) Nature (London) 333, 664-666].
High-resolution proton NMR spectroscopy has been used to monitor the internal pH of chromaffin granule ghosts during Ca2+ influx through the membrane. For this purpose, ghosts were prepared by lysing and resealing chromaffin granules in a medium containing the disodium-ethylenediaminetetraacetic acid complex (Na2.EDTA). Uncomplexed EDTA and Ca.EDTA give rise to distinct sets of methylene peaks in the proton NMR spectrum. Free EDTA titrates with a pK near 6.6 in deuterated media; the chemical shifts that accompany titration have been used to monitor intravesicular pH changes which occur inside chromaffin granule ghosts as a result of ATPase activity and deprotonation of EDTA during Ca2+ influx and complex formation. ATPase activity results in an NMR-detectable proton gradient which is dissipated by nigericin. Experiments monitoring Ca2+ uptake showed that protons which are liberated inside ghosts as a result of Ca.EDTA complex formation are not extruded from the ghosts via a process coupled to Ca2+ entry. This suggests that the Ca2+ transport system of the chromaffin granule membrane occurs without concurrent proton antiport and is not directly coupled energetically to the transmembrane pH gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.