We present a novel method for including the impact of massive neutrinos in cold dark matter N-body simulations. Our approach is compatible with widely employed Newtonian N-body codes and relies on only three simple modifications. First, we use commonly employed backscaling initial conditions, based on the cold dark matter plus baryon power spectrum instead of the total matter power spectrum. Second, the accurate Hubble rate is employed in both the backscaling and the evolution of particles in the N-body code. Finally, we shift the final particle positions in a post-processing step to account for the integrated effect of neutrinos on the particles in the simulation. However, we show that the first two modifications already capture most of the relevant neutrino physics for a large range of observationally interesting redshifts and scales. The output of the simulations are the cold dark matter and baryon distributions and can be analysed using standard methods. All modifications are simple to implement and do not generate any computational overhead. By implementing our methods in the N-body codes gadget-4 and gevolution, we show that any state-of-the-art Newtonian N-body code can be utilised out of the box. Our method is also compatible with higher order Lagrangian perturbation theory initial conditions and accurate for masses up to at least ∑ mν = 0.3 eV. Being formulated in relativistic gauge theory, in addition to including the impact of massive neutrinos, our method further includes relativistic corrections relevant on the large scales for free.
We present a novel method for including the impact of massive neutrinos in cold dark matter N-body simulations. Our approach is compatible with widely employed Newtonian N-body codes and relies on only three simple modifications. First, we use commonly employed backscaling initial conditions, based on the cold dark matter plus baryon power spectrum instead of the total matter power spectrum. Second, the accurate Hubble rate is employed in both the backscaling and the evolution of particles in the N-body code. Finally, we shift the final particle positions in a post-processing step to account for the integrated effect of neutrinos on the particles in the simulation. However, we show that the first two modifications already capture most of the relevant neutrino physics for a large range of observationally interesting redshifts and scales. The output of the simulations are the cold dark matter and baryon distributions and can be analysed using standard methods. All modifications are simple to implement and do not generate any computational overhead. By implementing our methods in the N-body codes gadget-4 and gevolution, we show that any state-of-the-art Newtonian N-body code can be utilised out of the box. Our method is also compatible with higher order Lagrangian perturbation theory initial conditions and accurate for masses up to at least m ν = 0.3 eV. Being formulated in relativistic gauge theory, in addition to including the impact of massive neutrinos, our method further includes relativistic corrections relevant on the large scales for free.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.