A very simple, efficient, and economical synthetic technique, which produces fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures at a relatively low temperature, is reported. The thermal dissociation of Ni acetylacetonate is carried out in a closed vessel cell (Swagelok) that was heated at 700 degrees C for 3 h. The encapsulation of ferromagnetic Ni nanospheres into the onion structured graphitic layers is obtained in a one-stage, single precursor reaction, without a catalyst, that possesses interesting magnetic properties. The magnetoresistance (MR) property of Ni nanospheres encapsulated in a fullerene-like carbon was measured, which shows large negative MR, of the order of 10%. The proposed mechanism for the formation of the Ni-C core-shell system is based on the segregation and the surface flux formed in the Ni and carbon particles during the reaction under autogenic pressure at elevated temperature.
The thermal decomposition of commercial silicone grease was carried out in a closed reactor (Swagelok) that was heated at 800 degrees C for 3 h, yielding a SiO2-carbon composite with a BET surface area of 369 m2/g. The bulk conductivity (5.72 x 10(-6) S x cm(-2)) of the SiO2-carbon composite was determined by impedance measurements. The as-prepared SiO2-carbon composite was further annealed at 500 degrees C in air for 2 h, which led to the formation of white paramagnetic silica particles (confirmed by ESR), possessing a surface area of 111 m2/g. The present synthetic technique requires unsophisticated equipment and a low-cost commercial precursor, and the reaction is carried out without a solvent, surfactant, or catalyst. The mechanism for the formation of a porous SiO2-carbon composite from the silicone grease is also presented.
The current investigation is centered on the thermal decomposition (700 degrees C) of acetyl acetonates of Ni, Co, and Fe in a closed reactor that was conducted by employing an external magnetic field (MF) of 10T. Interestingly, reactions of Co and Ni acetyl acetonates under a 10T MF produce Co and Ni nanoparticles (NPs) coated with carbon, while Fe acetyl acetonate produces Fe3O4 uncoated with carbon. Additionally, it is observed that all the as-formed magnetic particles tend to align in one dimension along applied MF; thus, this process can be used to fabricate large arrays of magnetic nanoparticles. The effect of an applied MF to synthesize morphologically and compositionally different products from corresponding precursors with their mesoscopic organization is the key theme of the present paper, explained with a plausible mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.