This paper describes the functionality and realisation of the smart metering infrastructure in the Netherlands, and discusses the changes that have been made in plans in response to privacy and security concerns. We also discuss the rationale for introducing smart meters-which is less clear than one would expect or indeed hope-and ongoing developments in the use of smart metering information in local energy community pilots.
There has been a huge increase in interest in blockchain technology. However, little is known about the drivers behind the adoption of this technology. In this article we identify and analyze these drivers, using six real-world and representative scenarios. We confirm in our analysis that blockchain is not an appropriate technology for some scenarios, from a purely technical point of view. The choice for blockchain technology in such scenarios may therefore seem as an irrational choice. However, our analysis reveals that there are nontechnical drivers at play that drive the adoption of blockchain, such as philosophical beliefs, network effects, and economic incentives. These nontechnical drivers may explain the rationality behind the choice for blockchain adoption.
This publication is distributed under the terms of Article 25fa of the Dutch Copyright Act (Auteurswet) with explicit consent by the author. Dutch law entitles the maker of a short scientific work funded either wholly or partially by Dutch public funds to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work. This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa implementation' pilot project. In this pilot research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.You are permitted to download and use the publication for personal purposes. Please note that you are not allowed to share this article on other platforms, but can link to it. All rights remain with the author(s) and/or copyrights owner(s) of this work. Any use of the publication or parts of it other than authorised under this licence or copyright law is prohibited. Neither Radboud University nor the authors of this publication are liable for any damage resulting from your (re)use of this publication.If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the ma terial
Industrial Control Systems are under increased scrutiny. Their security is historically sub-par, and although measures are being taken by the manufacturers to remedy this, the large installed base of legacy systems cannot easily be updated with state-of-the-art security measures. We propose a system that uses electromagnetic side-channel measurements to detect behavioural changes of the software running on industrial control systems. To demonstrate the feasibility of this method, we show it is possible to profile and distinguish between even small changes in programs on Siemens S7-317 PLCs, using methods from cryptographic side-channel analysis.
Abstract. Physically unclonable functions (PUFs) provide data that can be used for cryptographic purposes: on the one hand randomness for the initialization of random-number generators; on the other hand individual fingerprints for unique identification of specific hardware components. However, today's off-the-shelf personal computers advertise randomness and individual fingerprints only in the form of additional or dedicated hardware. This paper introduces a new set of tools to investigate whether intrinsic PUFs can be found in PC components that are not advertised as containing PUFs. In particular, this paper investigates AMD64 CPU registers as potential PUF sources in the operating-system kernel, the bootloader, and the system BIOS; investigates the CPU cache in the early boot stages; and investigates shared memory on Nvidia GPUs. This investigation found non-random non-fingerprinting behavior in several components but revealed usable PUFs in Nvidia GPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.