Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso-ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a prostaglandin E2 (PGE2) receptors agonist, decreased the excitability of D2 striatal projection neurons in slices and diminished their activity in vivo during novel environment exploration. We found that it also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.
Finding new targets to control or reduce seizure activity is essential to improve the management of epileptic patients. We hypothesized that activation of the pre-synaptic and inhibitory metabotropic glutamate receptor type 7 (mGlu7) reduces spontaneous seizures.We tested LSP2-9166, a recently developed mGlu7/4 agonist with unprecedented potency on mGlu7 receptors, in two paradigms of epileptogenesis. In a model of chemically induced epileptogenesis (pentylenetetrazol systemic injection), LSP2-9166 induces an antiepileptogenic effect rarely observed in preclinical studies. In particular, we found a bidirectional modulation of seizure progression by mGlu4 and mGlu7 receptors, the latter preventing kindling. In the intra-hippocampal injection of kainic acid mouse model that mimics the human mesial temporal lobe epilepsy, we found LSP2-9166 reduced seizure frequency and hippocampal sclerosis. LSP2-9166 also acts as an anti-epileptic drug on established seizures in both models tested. Specific modulation of the mGlu7 receptor could represent a novel approach to reduce pathological network remodeling.
Metabotropic glutamate receptor type 3 (mGlu3) controls the sleep/wake architecture which plays a role in the glutamatergic pathophysiology of schizophrenia. Interestingly, mGlu3 receptors expression is decreased in the brain of schizophrenic patients. However, little is known about the molecular mechanisms regulating mGlu3 receptors at the cell membrane. Subcellular receptor localization is strongly dependent on protein-protein interactions. Here we show that mGlu3 interacts with PICK1 and that this scaffolding protein is important for mGlu3 surface expression and function in hippocampal primary cultures. Disruption of their interaction via an mGlu3 C-terminal mimicking peptide or an inhibitor of the PDZ domain of PICK1 altered the functional expression of mGlu3 receptors in neurons.We next investigated the impact of disrupting the mGlu3-PICK1 interaction on hippocampal theta oscillations in vitro and in vivo in wild-type male mice. We found a decreased frequency of theta oscillations in organotypic hippocampal slices, similar to what was previously observed in mGlu3 KO mice. In addition, hippocampal theta power was reduced during REM sleep, NREM sleep and wake states after intra-ventricular administration of the mGlu3 C-terminal mimicking peptide. Targeting the mGlu3-PICK1 complex could thus be relevant to the pathophysiology of schizophrenia. Significance statementDysregulation of the glutamatergic system might play a role in the pathophysiology of schizophrenia.Metabotropic glutamate receptors type 3 (mGlu3) has been proposed as potential targets for schizophrenia. Understanding the molecular mechanisms regulating mGlu3 receptor at the cell membrane is critical toward apprehending how their dysfunction contributes to the pathogenesis of schizophrenia. Here we describe that the binding of the signaling and scaffolding protein PICK1 to mGlu3 receptors is important for their localization and physiological functions. The identification of new proteins that associate specifically to mGlu3 receptors will advance our understanding of the regulatory mechanisms associated with their targeting and function and ultimately might provide new therapeutic strategies to counter these psychiatric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.