Significance: Terahertz (THz) radiation has demonstrated a great potential in biomedical applications over the past three decades, mainly due to its non-invasive and label-free nature. Among all biological specimens, skin tissue is an optimal sample for the application of THz-based methods because it allows for overcoming some intrinsic limitations of the technique, such as a small penetration depth (0.1 to 0.3 mm for the skin, on average). Aim: We summarize the modern research results achieved when THz technology was applied to the skin, considering applications in both imaging/detection and treatment/modulation of the skin constituents. Approach: We perform a review of literature and analyze the recent research achievements in THz applications for skin diagnosis and investigation. Results: The reviewed results demonstrate the possibilities of THz spectroscopy and imaging, both pulsed and continuous, for diagnosis of skin melanoma and non-melanoma cancer, dysplasia, scars, and diabetic condition, mainly based on the analysis of THz optical properties. The possibility of modulating cell activity and treatment of various diseases by THz-wave exposure is shown as well. Conclusions: The rapid development of THz technologies and the obtained research results for skin tissue highlight the potential of THz waves as a research and therapeutic instrument. The perspectives on the use of THz radiation are related to both non-invasive diagnostics and stimulation and control of different processes in a living skin tissue for regeneration and cancer treatment.
While the number of studies related to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is constantly growing, it is essential to provide a framework of modeling viral infections. Therefore, this review aims to describe the background presented by earlier used models for viral studies and an approach to design an “ideal” tissue model for SARS-CoV-2 infection. Due to the previous successful achievements in antiviral research and tissue engineering, combining the emerging techniques such as bioprinting, microfluidics, and organoid formation are considered to be one of the best approaches to form in vitro tissue models. The fabrication of an integrated multi-tissue bioprinted platform tailored for SARS-CoV-2 infection can be a great breakthrough that can help defeat coronavirus disease in 2019.
For the past 10 years, the main efforts of most bioprinting research teams have focused on creating new bioinkformulations, rather than inventing new printing set-up concepts. New tissue-specific bioinks with good printability, shapefidelity, and biocompatibility are based on “old” (well-known) biomaterials, particularly fibrin. While the interest in fibrinbased bioinks is constantly growing, it is essential to provide a framework of material’s properties and trends. This review aimsto describe the fibrin properties and application in three-dimensional bioprinting and provide a view on further developmentof fibrin-based bioinks
Cell viability is the primary integrative parameter used for various purposes, particularly when fabricating tissue equivalents (e.g., using bioprinting or scaffolding techniques), optimizing conditions to cultivate cells, testing chemicals, drugs,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.