Using confocal microscopy we demonstrate that ciliary cells from airway epithelium maintain two qualitatively distinct cytosolic regions in terms of pH regulation. While the bulk of the cytosol is stringently buffered and is virtually insensitive to changes in extracellular pH (pHo), the values of cytosolic pH in the vicinity of the ciliary membrane is largely determined by pHo. Variation of pHo from 6.2 up to 8.5 failed to affect ciliary beat frequency (CBF). Application of NH(4)Cl induced profound localized alkalization near cilia, which did not depress ciliary activity, but resulted in strong and prolonged enhancement of CBF. Calmodulin and protein kinase A (PKA) functionality was essential for the alkalization-induced CBF enhancement. We suggest that the ability of airway epithelium to sustain unusually strong but localized cytosolic alkalization near cilia facilitates CBF enhancement through altering the binding constants of Ca2+ to calmodulin and promotion of Ca2+-calmodulin complex formation. The NH4Cl-induced elevations in cytosolic pH and Ca2+ concentration act synergistically to activate calmodulin-dependent processes, cAMP pathway, and, thereby, stimulate CBF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.