Mechanical forces play a major role in the regulation of cell adhesion and cytoskeletal organization. In order to explore the molecular mechanism underlying this regulation, we have investigated the relationship between local force applied by the cell to the substrate and the assembly of focal adhesions. A novel approach was developed for real-time, high-resolution measurements of forces applied by cells at single adhesion sites. This method combines micropatterning of elastomer substrates and fluorescence imaging of focal adhesions in live cells expressing GFP-tagged vinculin. Local forces are correlated with the orientation, total fluorescence intensity and area of the focal adhesions, indicating a constant stress of 5.5 +/- 2 nNmicrom(-2). The dynamics of the force-dependent modulation of focal adhesions were characterized by blocking actomyosin contractility and were found to be on a time scale of seconds. The results put clear constraints on the possible molecular mechanisms for the mechanosensory response of focal adhesions to applied force.
Summary Background C-kit+ lineage− cardiac stem cells (CSCs) improve postinfarction left ventricular (LV) dysfunction in animals; however, their efficacy in humans is unknown. Methods In February 2009, we began SCIPIO (Stem Cell Infusion in Patients with Ischemic CardiOmyopathy), a Phase I, randomized, open-label trial of CSCs in patients with postinfarction LV dysfunction (ejection fraction [EF] ≤ 40%) who underwent coronary bypass surgery. Autologous CSCs were isolated from the right atrial appendage and re-infused intracoronarily 4 ± 1 months after surgery; controls received no treatment. In Stage A, 9 treated and 4 control patients were consecutively enrolled to assess the feasibility and short-term safety of CSCs. Then, in Stage B, patients were randomized to the treated or control arm in a 2:3 ratio using a block randomization scheme and a block size of five. Primary (safety) and secondary (efficacy) endpoints were assessed at serial times after enrollment. Findings Autologous CSCs were successfully isolated and expanded in 80 out of 81 patients. In 16 treated patients, no CSC-related adverse effects have been observed. LVEF (3D echocardiography) increased from 30.3 ± 1.9% before CSC infusion to 38.5 ± 2.8% at 4 months after infusion, (P=0.001, n=14). This was associated with an improvement in regional wall motion score index (echocardiography) (1.91 ± 0.09 vs. 1.73 ± 0.09, P=0.005), NYHA functional class (2.19 ± 0.16 vs. 1.63 ± 0.16, P=0.003), and quality of life (MLHFQ score, 46.44 ± 5.22 vs. 26.69 ± 4.92, P<0.0001). In contrast, in 7 control patients, none of these variables changed appreciably during the corresponding time-interval. Importantly, the salubrious effects of CSCs were even more pronounced at 1 year (e.g., LVEF increased by 12.3 ± 2.1% vs. pre-CSCs, P=0.0007, n=8), suggesting that CSCs continue to improve LV function beyond the first 4 months. In the 7 treated patients in whom cardiac magnetic resonance (cMR) imaging could be performed, infarct size decreased by 7.8 ± 1.7 g (23.8%) at 4 months (P=0.004) and 9.8 ± 3.5 g (30.3%) at 1 year (P=0.04). Interpretation These initial results in humans are very encouraging, and suggest that infusion of autologous CSCs is effective in improving LV systolic function and reducing infarct size in patients with heart failure.
Here we investigated the potential role of bone-resorbing osteoclasts in homeostasis and stress-induced mobilization of hematopoietic progenitors. Different stress situations induced activity of osteoclasts (OCLs) along the stem cell-rich endosteum region of bone, secretion of proteolytic enzymes and mobilization of progenitors. Specific stimulation of OCLs with RANKL recruited mainly immature progenitors to the circulation in a CXCR4- and MMP-9-dependent manner; however, RANKL did not induce mobilization in young female PTPepsilon-knockout mice with defective OCL bone adhesion and resorption. Inhibition of OCLs with calcitonin reduced progenitor egress in homeostasis, G-CSF mobilization and stress situations. RANKL-stimulated bone-resorbing OCLs also reduced the stem cell niche components SDF-1, stem cell factor (SCF) and osteopontin along the endosteum, which was associated with progenitor mobilization. Finally, the major bone-resorbing proteinase, cathepsin K, also cleaved SDF-1 and SCF. Our findings indicate involvement of OCLs in selective progenitor recruitment as part of homeostasis and host defense, linking bone remodeling with regulation of hematopoiesis.
Trafficking of human CD34 ؉ stem/progenitor cells (HSCs/HPCs) is regulated by chemokines, cytokines, proteolytic enzymes, and adhesion molecules. We report that the adhesion receptor CD44 and its major ligand, hyaluronic acid (HA), are essential for homing into the bone marrow (BM) and spleen of nonobese diabetic/ severe combined immunodeficient (NOD/ SCID) mice and engraftment by human HSCs. Homing was blocked by anti-CD44 monoclonal antibodies (mAbs) or by soluble HA, and it was significantly impaired after intravenous injection of hyaluronidase. Furthermore, stromal cellderived factor-1 (SDF-1) was found to be a rapid and potent stimulator of progenitor adhesion to immobilized HA, leading to formation of actin-containing protrusions with CD44 located at their tips. HPCs migrating on HA toward a gradient of SDF-1 acquired spread and polarized morphology with CD44 concentrating at the pseudopodia at the leading edge. These morphologic alterations were not observed when the progenitors were first exposed to anti-CD44 mAbs, demonstrating a crosstalk between CD44 and CXCR4 signaling. Unexpectedly, we found that HA is expressed on human BM sinusoidal endothelium and endosteum, the regions where SDF-1 is also abundant. Taken IntroductionThe outcome of hematopoietic stem cell transplantation is influenced by the ability of the cells to home and repopulate their specialized bone marrow (BM) niches. The crosstalk between the hematopoietic stem/progenitor cells (HSCs/HPCs) and the microenvironment, which regulates homing to the BM, is not fully elucidated. Data indicate that transplanted HSCs/HPCs lodge into their BM niches by a sequence of highly regulated events that mimic the migration of leukocytes to inflammatory sites. This process includes tethering and rolling on E-and P-selectins, firm adhesion to the vessel wall, transendothelial extravasation, and migration through the extracellular matrix (ECM). [1][2][3] This multistep process is mediated by an interplay between chemokines, growth factors, proteolytic enzymes, and adhesion molecules. 4,5 The chemokine stromal cell-derived factor-1 (SDF-1), also named CXCL-12, and its receptor, CXCR4, play key roles in human HSC trafficking and repopulation. 6 This chemokine, expressed by both human and murine BM endothelium and stroma, 7,8 is the most powerful chemoattractant of HSCs/HPCs 9,10 that also regulates their survival. 11,12 It induces the integrin-mediated firm arrest of human HPCs under physiologic shear flow, facilitates their transendothelial migration, 3,8 and regulates homing 13 and BM engraftment. 14 Furthermore, SDF-1 is also required for the retention of murine stem and progenitor cells within the BM. 15,16 HSCs/HPCs express several types of adhesion molecules that are responsible for cell-cell and cell-ECM interactions 17 ; among them CD44 is of particular interest.The importance of CD44 in cell migration is reported for a variety of normal and malignant cells. 18 CD44 is a multifunctional and multistructural receptor that has a large array of isoforms....
Hematopoietic stem cells rarely contribute to hepatic regeneration, however, the mechanisms governing their homing to the liver, which is a crucial first step, are poorly understood. The chemokine stromal cell-derived factor-1 (SDF-1), which attracts human and murine progenitors, is expressed by liver bile duct epithelium. Neutralization of the SDF-1 receptor CXCR4 abolished homing and engraftment of the murine liver by human CD34 + hematopoietic progenitors, while local injection of human SDF-1 increased their homing. Engrafted human cells were localized in clusters surrounding the bile ducts, in close proximity to SDF-1-expressing epithelial cells, and differentiated into albumin-producing cells. Irradiation or inflammation increased SDF-1 levels and hepatic injury induced MMP-9 activity, leading to both increased CXCR4 expression and SDF-1-mediated recruitment of hematopoietic progenitors to the liver. Unexpectedly, HGF, which is increased following liver injury, promoted protrusion formation, CXCR4 upregulation, and SDF-1-mediated directional migration by human CD34 + progenitors, and synergized with stem cell factor. Thus, stress-induced signals, such as increased expression of SDF-1, MMP-9, and HGF, recruit human CD34 + progenitors with hematopoietic and/or hepatic-like potential to the liver of NOD/SCID mice. Our results suggest the potential of hematopoietic CD34 + /CXCR4 + cells to respond to stress signals from nonhematopoietic injured organs as an important mechanism for tissue targeting and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.