Dissociation of methane hydrates in the Arctic permafrost may lead to explosive gas emission. Methane blowout may be triggered by increasing gas flow rate at a certain depth. The mechanism of rock failure and blowout under the effect of pressurized gas was studied numerically and in laboratory experiments. The problem was formulated for the unsteady flow of compressed gas depending on the flow rate at a given depth, and pore gas pressure variations were calculated as a function of depth and time. The model parameters were chosen with reference to field data. According to the model, the input of gas to friable material at an increasing rate may lead to gas blowout and density loss propagating downward as the gas pressure exceeds the overburden pressure at some depth. The laboratory system was of the type of a Hele-Shaw cell, with small glass balls as friable material confined between two glass panels. The results of physical modeling and calculations show good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.