Crumpled graphene fiber is a promising structure to be a graphene precursor to enhance the production and mechanical properties of various carbon fibers. The primary goal of the present work is to study the crumpled graphene of different morphologies using molecular dynamics simulations to find the effect of the structural peculiarities on the mechanical properties, such as the tensile strength, elastic modulus, and deformation characteristics. Mono- and poly-disperse structures are considered under uniaxial tension along two different axes. As it is found, both structures are isotropic and stress–strain curves for tension along different directions are very similar. Young’s modulus of crumpled graphene is close, about 50 and 80 GPa; however, the strength of the polydisperse structure is bigger at the elastic regime. While a monodisperse structure can in-elastically deform until high tensile strength of 90 GPa, structure analysis showed that polydisperse crumpled graphene fiber pores appeared two times faster than the monodisperse ones.
Aluminium-copper (Al–Cu) compounds are one of the most-studied precipitation-strengthened alloy systems. Mechanical properties of Cu-Al systems considerably dependent on the phase composition. Excellent properties primarily depend on the intrinsic microstructures formed during processing stages, particularly the precipitated phases or the so-called intermetallics, along with various defects and impurity segregation, have important influences on the composite strength. Study of fabrication techniques to obtain composites with improved mechanical properties, careful investigation of phase composition, dynamics and kinetics are of high importance. Molecular dynamics simulation is used to study on the atomistic level the process of formation of Al/Cu composite from two initially separated crystals by severe plastic deformation. The proposed model is the simplification of scenario, experimentally observed previously. However, even in such a simple model, understanding of the mechanisms underlying in the process of composite formation can be obtained.
The Mg-Al composite material possesses a large potential value in practical application due to its excellent properties. Molecular dynamics with the embedded atomic method potentials is applied to study aluminium-magnesium (Al-Mg) interface bonding during deformation. Study of fabrication techniques to obtain composites with improved mechanical properties, careful investigation of phase composition, dynamics and kinetics are of high importance. The loading scheme used in the present work is the simplification of the scenario, experimentally observed previously to obtain Al/Cu composites. It is shown that shear strain has a crucial role in the diffusion process. The results indicated that the symmetrical diffusion took place in the Mg-Al interface during deformation. Tensile tests showed that fracture took place in the Mg part of the final composite sample, which means that the interlayer region where the mixing of Mg and Al atoms observed is much stronger than the pure Mg part.
The aluminum–magnesium (Al–Mg) composite materials possess a large potential value in practical application due to their excellent properties. Molecular dynamics with the embedded atom method potentials is applied to study Al–Mg interface bonding during deformation-temperature treatment. The study of fabrication techniques to obtain composites with improved mechanical properties, and dynamics and kinetics of atom mixture are of high importance. The loading scheme used in the present work is the simplification of the scenario, experimentally observed previously to obtain Al–Cu and Al–Nb composites. It is shown that shear strain has a crucial role in the mixture process. The results indicated that the symmetrical atomic movement occurred in the Mg–Al interface during deformation. Tensile tests showed that fracture occurred in the Mg part of the final composite sample, which means that the interlayer region where the mixing of Mg, and Al atoms observed is much stronger than the pure Mg part.
With the urgent lightweight demand in the aerospace engineering and transportation industries, Al / Ti composite structures have attracted much interest due to their excellent performances compared with conventional materials. Computational simulations have contributed to the understanding of both fundamental and practical aspects of fabrication of such composites and studying of their properties. The present work reports the results of studies based on molecular dynamics simulations on the mechanical properties of an Al / Ti composite obtained by compression combined with shear strain. Tensile properties of a nanosized Ti / Al composite consisting of two single crystals obtained after different compression rates are analyzed. The loading scheme applied in the present work is a simplification of the scenario experimentally realized previously to obtain Al-matrix composites. It is confirmed that uniaxial compression combined with shear deformation is an effective way to obtain the composite structure since severe plastic deformation facilitates the diffusion process. The results indicated that a symmetrical atomic movement took place in the Ti / Al interface during deformation. However, Al atoms diffuse into the Ti block easier than Ti atoms into the Al block. Tensile tests showed that fracture took place in the Al part of the final composite sample, which means that the interlayer region where the mixing of Ti and Al atoms is observed is stronger than the pure Al part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.