The neocortex is densely innervated by basal forebrain (BF) cholinergic neurons. Long-range axons of cholinergic neurons regulate higher-order cognitive function and dysfunction in the neocortex by releasing acetylcholine (ACh). ACh release dynamically reconfigures neocortical microcircuitry through differential spatiotemporal actions on cell-types and their synaptic connections. At the cellular level, ACh release controls neuronal excitability and firing rate, by hyperpolarizing or depolarizing target neurons. At the synaptic level, ACh impacts transmission dynamics not only by altering the presynaptic probability of release, but also the magnitude of the postsynaptic response. Despite the crucial role of ACh release in physiology and pathophysiology, a comprehensive understanding of the way it regulates the activity of diverse neocortical cell-types and synaptic connections has remained elusive. This review aims to summarize the state-of-the-art anatomical and physiological data to develop a functional map of the cellular, synaptic and microcircuit effects of ACh in the neocortex of rodents and non-human primates, and to serve as a quantitative reference for those intending to build data-driven computational models on the role of ACh in governing brain states.
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with yet incompletely uncovered molecular determinants. Alterations in the abundance of low molecular weight compounds (metabolites) in ASD could add to our understanding of the disease. Indeed, such alterations take place in the urine, plasma and cerebellum of ASD individuals. In this work, we investigated mass-spectrometric signal intensities of 1,366 metabolites in the prefrontal cortex grey matter of 32 ASD and 40 control individuals. 15% of these metabolites showed significantly different intensities in ASD and clustered in 16 metabolic pathways. Of them, ten pathways were altered in urine and blood of ASD individuals (Fisher test,
p
< 0.05), opening an opportunity for the design of new diagnostic instruments. Furthermore, metabolic measurements conducted in 40 chimpanzees and 40 macaques showed an excess of metabolite intensity differences unique to humans, supporting the hypothesized disruption of evolutionary novel cortical mechanisms in ASD.
Accurate molecular concentrations are essential for reliable analyses of biochemical networks and the creation of predictive models for molecular and systems biology, yet protein and metabolite concentrations used in such models are often poorly constrained or irreproducible. Challenges of using data from different sources include conflicts in nomenclature and units, as well as discrepancies in experimental procedures, data processing and implementation of the model. To obtain a consistent estimate of protein and metabolite levels, we integrated and normalized data from a large variety of sources to calculate Adjusted Molecular Concentrations. We found a high degree of reproducibility and consistency of many molecular species across brain regions and cell types, consistent with tight homeostatic regulation. We demonstrated the value of this normalization with differential protein expression analyses related to neurodegenerative diseases, brain regions and cell types. We also used the results in proof-of-concept simulations of brain energy metabolism. The standardized Brain Molecular Atlas overcomes the obstacles of missing or inconsistent data to support systems biology research and is provided as a resource for biomolecular modeling.
Human genetic variability is thought to account for a substantial fraction of individual biochemical characteristics -in biomedical sense, of individual drug response. However, only a handful of human genetic variants have been linked to medication outcomes. Here, we combine data on drug-protein interactions and human genome sequences to assess the impact of human variation on their binding affinity. Using data from the complexes of FDAdrugs and drug-like compounds, we predict SNPs substantially affecting the protein-ligand binding affinities. We estimate that an average individual carries ~6 SNPs affecting ~5 different FDA-approved drugs from among all of the approved compounds. SNPs affecting drug-protein binding affinity have low frequency in the population indicating that the genetic component for many ADEs may be highly personalized with each individual carrying a unique set of relevant SNPs. The reduction of ADEs, therefore, may primarily rely on the application of computational genome analysis in the clinic rather than the experimental study of common SNPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.