Communicated by M. LewinThe global-in-time existence and uniqueness of bounded weak solutions to a spinorial matrix drift-diffusion model for semiconductors is proved. Developing the electron density matrix in the Pauli basis, the coefficients (charge density and spin-vector density) satisfy a parabolic 4 × 4 cross-diffusion system. The key idea of the existence proof is to work with different variables: the spin-up and spin-down densities as well as the parallel and perpendicular components of the spin-vector density with respect to the precession vector. In these variables, the diffusion matrix becomes diagonal. The proofs of the L ∞ estimates are based on Stampacchia truncation as well as Moser-and Alikakos-type iteration arguments. The monotonicity of the entropy (or free energy) is also proved. Numerical experiments in one-space dimension using a finite-volume discretization indicate that the entropy decays exponentially fast to the equilibrium state.
International audienceAn implicit Euler finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors is analyzed. The model consists of strongly coupled parabolic equations for the electron density matrix or, alternatively, of weakly coupled equations for the charge and spin-vector densities, coupled to the Poisson equation for the elec-tric potential. The equations are solved in a bounded domain with mixed Dirichlet-Neumann boundary conditions. The charge and spin-vector fluxes are approximated by a Scharfetter-Gummel discretization. The main features of the numerical scheme are the preservation of positivity and L ∞ bounds and the dissipation of the discrete free energy. The existence of a bounded discrete solution and the monotonicity of the discrete free energy are proved. For undoped semiconductor materials, the numerical scheme is uncon-ditionally stable. The fundamental ideas are reformulations using spin-up and spin-down densities and certain projections of the spin-vector density, free energy estimates, and a discrete Moser iteration. Furthermore, numerical simulations of a simple ferromagnetic-layer field-effect transistor in two space dimensions are presented
Explicit energy-transport equations for the spinorial carrier transport in ferromagnetic semiconductors are calculated from a general spin energy-transport system that was derived by Ben Abdallah and El Hajj from a spinorial Boltzmann equation. The novelty of our approach are the simplifying assumptions leading to explicit models which extend both spin drift-diffusion and semiclassical energy-transport equations. The explicit models allow us to examine the interplay between the spin and charge degrees of freedom. In particular, the monotonicity of the entropy (or free energy) and gradient estimates are shown for these models and the existence of weak solutions to a time-discrete version of one of the models is proved, using novel truncation arguments. Numerical experiments in one-dimensional multilayer structures using a finite-volume discretization illustrate the effect of the temperature and the polarization parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.