No support was found for gradual gynoecium reduction via pseudomonomery. The abrupt origin of monomery via direct change of gynoecium merism and the unstable carpel orientation observed are related to the general lability of the flower groundplan in Polyscias. The apparent occurrence of the unusual oblique cross zone in unicarpellate Araliaceae can be explained by developmental constraints.
Floral symmetry is widely known as one of the most important structural traits of reproductive organs in angiosperms. It is tightly related to the shape and arrangement of floral parts, and at the same time, it plays a key role in general appearance (visual gestalt) of a flower, which is especially important for the interactions of zoophilous flowers with their pollinators. The traditional classification of floral symmetry divides nearly all the diversity of angiosperm flowers into actinomorphic and zygomorphic ones. Within this system, which is useful for ecological studies, many variations of symmetry appear to be disregarded. At the same time, the diversity of floral symmetry is underpinned not only by ecological factors, but also by morphogenetic mechanisms and constraints. Sometimes it is not an easy task to uncover the adaptive or developmental significance of a change of the floral symmetry in a particular lineage. Using the asterid order Apiales as a model group, we demonstrate that such changes can correlate with the merism of the entire flower or of its particular whorl, with the relative orientation of gynoecium to the rest of the flower, with the presence of sterile floral elements and other morphological characters. Besides, in some taxa, the shape and symmetry of the flower change in the course of its development, which should be taken in consideration in morphological comparisons and evaluations of synapomorphies in a particular clade. Finally, we show that different results can be obtained due to employment of different approaches: for instance, many flowers that are traditionally described as actinomorphic turn out to be disymmetric, monosymmetric, or asymmetric from a more detailed look. The traditional method of division into actinomorphy and zygomorphy deals with the general appearance of a flower, and mainly considers the shape of the corolla, while the geometrical approach handles the entire three-dimensional structure of the flower, and provides an exact number of its symmetry planes.
Pseudomonomerous gynoecia with three (or four) carpels are unknown in the species-rich core group of Apiales, but this condition is shared by three species-poor families (Pennantiaceae, Torricelliaceae, Griseliniaceae) that form the basal grade of the order. Testing a hypothesis on the ancestral nature of carpel dimorphism in Apiales requires comparative data for all three lineages in this grade. We provide the first detailed description of flowers, including floral vasculature and gynoecium development, in a member of Pennantiaceae (Pennantia corymbosa). In contrast to many other Apiales, the inflorescence of Pennantia is paniculate and therefore has an unstable number of phyllomes in axes terminated by flowers. All phyllomes in the inflorescence are shifted onto lateral branches they subtend exhibiting recaulescence, a pattern that has not been reported elsewhere in Apiales. Plants are dioecious with functionally unisexual flowers. There are normally five stamens alternating with five petals. Anthers are present and produce pollen in stamens of male as well as female flowers, but ventral microsporangia are reduced in some anthers of female flowers. Anther morphology sometimes varies even among stamens of the same flower. Two types of synthecal anthers are recorded. Pollen dimorphism is confirmed: inaperturate pollen produced by stamens of female flowers supposedly acts as the only reward for pollinators in the absence of nectaries. The gynoecium of the female flower is syncarpous and pseudomonomerous: only one of three carpels is fertile. The gynoecium is initiated as three carpel primordia (future stigmas). One of them is smaller than the other two and occupies an alternistaminal (and antepetalous) position. The two large carpel primordia are located in the radii of stamens that are generally smaller (early in development) than the three other stamens. The carpel dimorphism is maintained at anthesis. The carpel with the smaller stigma is fertile, and those with larger stigmas are sterile. The carpels are congenitally united below the stigmas. The ovary is superior, unilocular (vs. inferior and plurilocular in Torricelliaceae and Griseliniaceae) and usually uniovulate with pendent ovule(s) inserted at the cross-zone level of the fertile carpel. As in most other Apiales, the short symplicate zone is sealed by postgenital fusion at anthesis and forms an internal compitum. The fertile carpel of the members of the basal grade of Apiales investigated so far is uniformly arranged in a petal radius. This is consistent with the idea that pseudomonomery is associated with stable patterns of flower groundplan in Apiales. Our data do not provide any clear structural or developmental evidence of independent origins of carpel dimorphism in Pennantiaceae, Torricelliaceae and Griseliniaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.