Background Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. Methods The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. Findings At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. Conclusions In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.
Background: Residents of malaria-endemic communities spend several hours outdoors performing different activities, e.g. cooking, story-telling or eating, thereby exposing themselves to potentially-infectious mosquitoes. This compromises effectiveness of indoor interventions, notably long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study characterized common peri-domestic spaces in rural southeastern Tanzania, and assessed protective efficacy against mosquitoes of hessian fabric mats and ribbons treated with the spatial repellent, transfluthrin, and fitted to chairs and outdoor kitchens, respectively. Methods: Two hundred households were surveyed, and their most-used peri-domestic spaces physically characterized. Protective efficacies of locally-made transfluthrin-emanating chairs and hessian ribbons were tested in outdoor environments of 28 households in dry and wet seasons, using volunteer-occupied exposure-free double net traps. CDC light traps were used to estimate host-seeking mosquito densities within open-structure outdoor kitchens. Fieldcollected Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs to estimate 24 h-mortality. Finally, The World Health Organization insecticide susceptibility tests were conducted on wild-caught Anopheles from the villages. Results: Approximately half (52%) of houses had verandas. Aside from these verandas, most houses also had peridomestic spaces where residents stayed most times (67% of houses with verandas and 94% of non-veranda houses). Two-thirds of these spaces were sited under trees, and only one third (34.4%) were built-up. The outdoor structures were usually makeshift kitchens having roofs and partial walls. Transfluthrin-treated chairs reduced outdoor-biting An. arabiensis densities by 70-85%, while transfluthrin-treated hessian ribbons fitted to the outdoor kitchens caused 77-81% reduction in the general peri-domestic area. Almost all the field-collected An. arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. The An. arabiensis were susceptible to non-pyrethroids (pirimiphos methyl and bendiocarb), but resistant to pyrethroids commonly used on LLINs (deltamethrin and permethrin). Conclusion: Most houses had actively-used peri-domestic outdoor spaces where exposure to mosquitoes occurred. The transfluthrin-treated chairs and ribbons reduced outdoor-biting malaria vectors in these peri-domestic spaces, and also elicited significant mortality among pyrethroid-resistant field-caught malaria vectors. These two new prototype formats for transfluthrin emanators, if developed further, may constitute new options for complementing LLINs and IRS with outdoor protection against malaria and other mosquito-borne pathogens in areas where peri-domestic human activities are common.
Background Agricultural pesticides may exert strong selection pressures on malaria vectors during the aquatic life stages and may contribute to resistance in adult mosquitoes. This could reduce the performance of key vector control interventions such as indoor-residual spraying and insecticide-treated nets. The aim of this study was to investigate effects of agrochemicals on susceptibility and fitness of the malaria vectors across farming areas in Tanzania. Methods An exploratory mixed-methods study was conducted to assess pesticide use in four villages (V1–V4) in south-eastern Tanzania. Anopheles gambiae (s.l.) larvae were collected from agricultural fields in the same villages and their emergent adults examined for insecticide susceptibility, egg-laying and wing lengths (as proxy for body size). These tests were repeated using two groups of laboratory-reared An. arabiensis, one of which was pre-exposed for 48 h to sub-lethal aquatic doses of agricultural pesticides found in the villages. Results Farmers lacked awareness about the linkages between the public health and agriculture sectors but were interested in being more informed. Agrochemical usage was reported as extensive in V1, V2 and V3 but minimal in V4. Similarly, mosquitoes from V1 to V3 but not V4 were resistant to pyrethroids and either pirimiphos-methyl or bendiocarb, or both. Adding the synergist piperonyl butoxide restored potency of the pyrethroids. Pre-exposure of laboratory-reared mosquitoes to pesticides during aquatic stages did not affect insecticide susceptibility in emergent adults of the same filial generation. There was also no effect on fecundity, except after pre-exposure to organophosphates, which were associated with fewer eggs and smaller mosquitoes. Wild mosquitoes were smaller than laboratory-reared ones, but fecundity was similar. Conclusions Safeguarding the potential of insecticide-based interventions requires improved understanding of how agricultural pesticides influence important life cycle processes and transmission potential of mosquito vectors. In this study, susceptibility of mosquitoes to public health insecticides was lower in villages reporting frequent use of pesticides compared to villages with little or no pesticide use. Variations in the fitness parameters, fecundity and wing length marginally reflected the differences in exposure to agrochemicals and should be investigated further. Pesticide use may exert additional life cycle constraints on mosquito vectors, but this likely occurs after multi-generational exposures. Graphical Abstract
Background Residents of malaria-endemic communities spend several hours outdoors performing different activities, e.g. cooking, story-telling or eating, thereby exposing themselves to potentially-infectious mosquitoes. This compromises effectiveness of indoor interventions, notably long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study characterized common peri-domestic spaces in rural south-eastern Tanzania, and assessed protective efficacies of hessian fabric mats and ribbons treated with the spatial repellent, transfluthrin and respectively fitted to chairs and outdoor kitchens, against mosquitoes.Methods Two hundred households were surveyed, and their most-used peri-domestic spaces physically characterized. Protective efficacies of locally-made transfluthrin-emanating chairs and hessian ribbons were tested in outdoor environments of eight households using volunteer-occupied exposure-free double net traps. CDC light traps were used to estimate host-seeking mosquito densities within open-structure outdoor kitchens. Field-collected Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs to estimate 24h-mortality. Finally, WHO insecticide susceptibility tests were conducted on wild-caught Anopheles from the villages.Results Approximately half (52%) of houses had verandas. Aside from these verandas, most houses also had peri-domestic spaces where residents stayed most times (67% of houses with verandas and 94% of non-veranda houses). Two-thirds of these spaces were sited under trees, and only one third (34.4%) were built-up. The outdoor structures were usually makeshift kitchens having roofs and partial walls. Transfluthrin-treated chairs reduced outdoor-biting An. arabiensis densities by 70-76% while transfluthrin-treated hessian ribbons fitted to the outdoor kitchens caused 81% reduction in the general peri-domestic area. Almost all the field-collected An. arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. The An. arabiensis were susceptible to non-pyrethroids (pirimiphos methyl & bendiocarb) but resistant to pyrethroids commonly used on LLINs (deltamethrin & permethrin).Conclusion Most houses had actively-used peri-domestic outdoor spaces where exposure to mosquitoes occurred. The transfluthrin-treated chair and ribbons reduced outdoor-biting malaria vectors in these peri-domestic spaces, and also elicited significant mortality among pyrethroid-resistant field-caught malaria vectors. These two new prototype formats for transfluthrin emanators, if developed further, may constitute new options for complementing LLINs and IRS with outdoor protection against malaria and other mosquito-borne pathogens in areas where peri-domestic human activities are common.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.