Background
SARS-CoV-2, which causes the coronavirus disease (COVID-19), presents high rates of morbidity and mortality and has affected thousands of people around the world. The search to eliminate SARS-CoV-2 is ongoing and urgent. This systematic review seeks to assess whether photodynamic therapy (PDT) could be effective in SARS-CoV-2 inactivation.
Methods
The focus question was: Can photodynamic therapy be used as potential guidance for dealing with SARS-CoV-2?”. A literature search, according to PRISMA statements, was conducted in the electronic databases PubMed, EMBASE, SCOPUS, Web of Science, LILACS, and Google Scholar. Studies published from January 2004 to June 2020 were analyzed.
In vitro
and
in vivo
studies were included that evaluated the effect of PDT mediated by several photosensitizers on RNA and DNA enveloped and non-enveloped viruses.
Results
From 27 selected manuscripts, 26 publications used
in vitro
studies, 24 were exclusively
in vitro
, and two had
in vitro
/
in vivo
parts. Only one analyzed publication was exclusively
in vivo
. Meta-analysis studies were unfeasible due to heterogeneity of the data. The risk of bias was analyzed in all studies.
Conclusion
The
in vitro
and
in vivo
studies selected in this systematic review indicated that PDT is capable of photoinactivating enveloped and non-enveloped DNA and RNA viruses, suggesting that PDT can potentially photoinactivate SARS-CoV-2.
Aim: To evaluate the efficacy of photodynamic inactivation (PDI) mediated by hypericin encapsulated in P-123 copolymeric micelles (P123-Hyp) alone and in combination with fluconazole (FLU) against planktonic cells and biofilm formation of Candida species Materials & methods: PDI was performed using P123-Hyp and an LED device with irradiance of 3.0 mW/cm2 . Results: Most of isolates (70%) were completely inhibited with concentrations up to 2.0 μmol/l of HYP and light fluence of 16.2 J/cm2. FLU-resistant strains had synergic effect with P123-HYP-PDI and FLU. The biofilm formation was inhibited in all species, in additional the changes in Candida morphology observed by scanning electron microscopy. Conclusion: P123-Hyp-PDI is a promising option to treat fungal infections and medical devices to prevent biofilm formation and fungal spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.