Warfarin is an anticoagulant drug with narrow therapeutic index and high interindividual variability in dose requirement. S-warfarin is metabolized mainly by polymorphic cytochrome P450 (CYP) 2C9. We systematically quantified the influence of CYP2C9 genotype, demographic factors and concomitant drug treatment on warfarin metabolism and maintenance dose. The mean warfarin doses were lower in carriers of one (2.71 mg/day, 59 patients) and two polymorphic alleles (1.64 mg/day, 11 patients) than in carriers of two wild-type alleles (4.88 mg/day, 118 patients). Multiple regression analysis demonstrated that CYP2C9 genotype, age, concomitant treatment with warfarin metabolism inducers and lean body weight contributed significantly to interindividual variability in warfarin dose requirement (adjusted R 2 ¼ 0.37). The same factors, except for age, significantly influenced S-warfarin clearance (adjusted R 2 ¼ 0.42). These results can serve as a starting point for designing prospective studies in patients in the initiation phase of genotype-based warfarin therapy.
The degree of interpatient variability in the warfarin dose required to achieve the desired anticoagulant response can only partly be explained by polymorphisms in the CYP2C9 gene, suggesting that additional genetic factors such as polymorphisms in genes involved in blood coagulation may influence warfarin dose requirement. In total, 165 Caucasian outpatients on stable maintenance warfarin treatment previously genotyped for CYP2C9 were analysed for common polymorphisms in FVII, GGCX and VKORC1 genes. The -402G > A polymorphism and a variable number of repeats in intron 7 of FVII gene did not significantly influence warfarin dose. The mean warfarin doses increased with the number of (CAA) repeats in the GGCX gene, but the differences were significant only in the CYP2C9*1/*1 subgroup of patients (p = 0.032). Common polymorphism (6484C > T) in intron 1 of the VKORC1 gene led to lower warfarin dose requirement; the means were 5.70 (95% C.I. 4.95-6.45), 3.49 (3.07-3.90) and 2.11 (1.80-2.42) mg/day for 6484 CC, CT and TT genotypes, respectively (p < 0.001). In contrast, 9041G > A polymorphism in 3'UTR of theVKORC1 gene led to higher warfarin dose requirement; the means were 3.09 (2.58- 3.60), 4.26 (3.69-4.82) and 5.86 (4.53-7.19) mg/day for 9041 GG, GA and AA genotypes, respectively (p < 0.001). With a regression model we explained 60.0% of variability in warfarin dose, which was due to gene polymorphisms (CYP2C9, VKORC1), age and body-surface-area. When aiming for individualised warfarin therapy, at least VKORC1 polymorphisms should be included in predictive genotyping besides CYP2C9.
SummaryImpaired fibrinolysis due to increased plasminogen activator inhibitor-1 (PAI-1) is observed in up to 40% of patients with venous thromboembolism and might be causally related to the disease. There is evidence that genetic variations in the promoter of the PAI-1 gene and metabolic factors contribute to increased plasma PAI-1 levels.A single nucleotide insertion/deletion (4G/5G) polymorphism in the promoter region of the PAI-1 gene and metabolic factors were studied in 158 unrelated patients below the age of 61 years (43 ± 11 years, mean ± standard deviation) with history of objectively confirmed venous thromboembolism and in 145 apparently healthy controls.Patients had on average two times higher PAI activity (11.9 vs. 6.1 IU/ml) and by 40% higher PAI-1 antigen (14.8 vs. 10.7 ng/ml) than healthy controls, and also higher body mass index, lipid levels, fasting glucose and insulin. Patients differed significantly from healthy controls neither in the frequency of the 4G and 5G alleles (0.57/0.43 in patients and 0.52/0.48 in controls) nor in the distribution of the 4G/5G genotypes. Possession of the 4G/4G or the 4G/5G genotype did not increase relative risk for venous thromboembolic disease and the distribution of the 4G/5G genotypes was neither associated with recurrent nor with spontaneous disease. In patients association between the 4G/5G genotypes and PAI activity (adjusted for body mass index, triglyceride and glucose level) was observed, with the highest PAI activity values in the 4G/4G genotype (14.6 IU/ml), intermediate in the 4G/5G genotype (13.3 IU/ml) and the lowest in the 5G/5G genotype (5.2 IU/ml, all values means). Association between PAI activity and triglyceride level was the strongest in the 4G/4G genotype (correlation coefficient r = 0.47, p <0.01) and the weakest in the 5G/5G genotype (r = -0.04, not significant).In conclusion, the present case-control study shows an association between the 4G/5G polymorphism in the promoter of the PAI-1 gene and plasma PAI-1 levels in patients with venous thromboembolism. Similar distribution of the 4G/5G genotypes in patients and healthy controls suggests that this genetic variation by itself is not a major risk factor for venous thromboembolism.
We confirmed important interaction between carbamazepine and warfarin metabolism which can be of major clinical importance. If treatment with carbamazepine cannot be avoided, patients taking warfarin should be frequently monitored, especially when initiating or stopping carbamazepine therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.