CNC milling machine is a production machine which widely used to manufacture many kinds of products. In the process of milling machining, the time needed to produce a component must be as minimum as possible to minimize the costs and its impacts on the environment. One of energy consumptions used in CNC milling machines is to supply electric motors for each axis of motions. Cutting energy consumption can be minimized by optimizing the cutting parameters, such as the cutting toolpath. Modelling and comparing the total energy consumption of the cutting process from different cutting toolpaths and strategies are important in selecting the right toolpath that has the smallest energy consumption. To achieve this goal, this study models the energy consumption during the cutting process. The model is then used to evaluate and compare different cutting toolpaths from different cutting strategies. Three prismatic and one sculptured part were used to examine the model of cutting energy consumption. A Graphical User Interface is also developed to simplify the comparison and evaluation process. Through this process it will be possible to predict energy consumption in the cutting toolpath and hence enable the selection of the right toolpath to reduce energy consumption in machining.
The third paragraph on the 1 Introduction section should be replaced as follows:Milling is one of the process of removing material which occurs because of the contact between the cutting tool that rotates on the spindle with the workpiece gripped on the machine table. In the digital era, there are many automated machines that are increasingly facilitating the production process, including milling machines. Many large industries have switched to CNC (Computer Numerical Control), but not a few manufacturers are still utilizing manual milling machines for production activities. Although it still operating on the same basic principles, modern CNC milling machines are significantly different from older milling machines. CNC machining plays an important role in current mass manufacturing because of its ability to achieve high accuracy and precision as well as its ability to accept computer commands for motion control [5].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.