Abstract. The application of UAV-based aerial imagery has advanced exponentially in the past two decades. This can be attributed to UAV operational flexibility, ultra-high spatial resolution, inexpensiveness, and UAV-based sensors enhancement. Nonetheless, the application of multitemporal series of multispectral UAV imagery still suffers significant misregistration errors, and therefore becoming a concern for applications such as precision agriculture. Direct image georeferencing and co-registration is commonly done using ground control points; this is usually costly and time consuming. This research proposes a novel approach for automatic co-registration of multitemporal UAV imagery using intensity-based keypoints. The Speeded Up Robust Features (SURF), Binary Robust Invariant Scalable Keypoints (BRISK), Maximally Stable Extremal Regions (MSER) and KAZE algorithms, were tested and parameters optimized. Image matching performance of these algorithms informed the decision to pursue further experiments with only SURF and KAZE. Optimally parametrized SURF and KAZE algorithms obtained co-registration accuracies of 0.1 and 0.3 pixels for intra-epoch and inter-epoch images respectively. To obtain better intra-epoch co-registration accuracy, collective band processing is advised whereas one-to-one matching strategy is recommended for inter-epoch co-registration. The results were tested using a maize crop monitoring case and the; comparison of spectral response of vegetation between the UAV sensors, Parrot Sequoia and Micro MCA was performed. Due to the missing incidence sensor, spectral and radiometric calibration of Micro MCA imagery is observed to be key in achieving optimal response. Also, the cameras have different specifications and thus differ in the quality of their respective photogrammetric outputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.