We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a <20 M Jup widely separated (∼8″, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color–magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST's NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20 μm at resolutions of ∼1000–3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.
Context. The Mid-Infrared Instrument (MIRI) onboard the James Webb Space Telescope (JWST) will provide imaging, coronagraphy, low-resolution spectroscopy, and medium-resolution spectroscopy at unprecedented sensitivity levels in the mid-infrared wavelength range.The Medium Resolution Spectrometer (MRS) of MIRI is an integral field spectrograph that provides diffraction-limited spectroscopy between 4.9 and 28.3 µm, within a field of view (FOV) varying from ∼13 to ∼56 arcsec square. The design for MIRI MRS conforms with the goals of the JWST mission to observe high redshift galaxies and to study cosmology as well as observations of galactic objects, and stellar and planetary systems. Aims. From ground testing, we calculate the physical parameters essential for general observers and calibrating the wavelength solution and resolving power of the MRS which is critical for maximizing the scientific performance of the instrument. Methods. We have used ground-based observations of discrete spectral features in combination with Fabry-Perot etalon spectra to characterize the wavelength solution and spectral resolving power of the MRS. We present the methodology used to derive the MRS spectral characterization, which includes the precise wavelength coverage of each MRS sub-band, computation of the resolving power as a function of wavelength, and measuring slice-dependent spectral distortions. Results. The ground calibration of the MRS shows that it will cover the wavelength ranges from 4.9 to 28.3 µm, divided in 12 overlapping spectral sub-bands. The resolving power is R 3500 in channel 1, R 3000 in channel 2, R 2500 in channel 3, and R 1500 in channel 4. The MRS spectral resolution optimizes the sensitivity for detection of spectral features with a velocity width of ∼ 100 km s −1 which is characteristic of most astronomical phenomena JWST aims to study in the mid-infrared. Based on the ground test data, the wavelength calibration accuracy is estimated to be below one-tenth of a pixel (0.1 nm at 5 µm and 0.4 at 28 µm), with small systematic shifts due to the target position within a slice for unresolved sources that have a maximum amplitude of about 0.25 spectral resolution elements. The absolute wavelength calibration is presently uncertain at the level of 0.35 nm at 5 µm and 46 nm at 28 µm, and it will be refined using in-flight commissioning observations. Conclusions. Based on ground test data, the MRS complies with the spectral requirements for both the R and wavelength accuracy for which it was designed. We also present the commissioning strategies and targets that will be followed to update the spectral characterization of the MRS.
We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5 μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16 μm. At a separation of ∼0.″82 (87 − 31 + 108 au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5 μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σ contrast limits of ∼1 × 10−5 and ∼2 × 10−4 at 1″ for NIRCam at 4.4 μm and MIRI at 11.3 μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3M Jup beyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by a BT-SETTL atmospheric model from 1 to 16 μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained between log L bol / L ⊙ = −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2 M Jup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.
The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100–3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.