A quite energetic seismic excitation consisting of one main and three additional distinctive earthquake clusters that occurred in the transition area between the Kefalonia Transform Fault Zone (KTFZ) and the continental collision between the Adriatic and Aegean microplates is thoroughly studied after the high-precision aftershocks’ relocation. The activated fault segments are in an area where historical and instrumental data have never claimed the occurrence of a catastrophic (M ≥ 6.0) earthquake. The relocated seismicity initially defines an activated structure extending from the northern segment of the Lefkada branch of KTFZ with the same NNE–SSW orientation and dextral strike slip faulting, and then keeping the same sense of motion, its strike becomes NE–SW and its dip direction NW. This provides unprecedented information on the link between the KTFZ and the collision front and sheds more light on the regional geodynamics. The earthquake catalog, which was especially compiled for this study, starts one year before the occurrence of the Mw5.4 main shock, and adequately provides the proper data source for investigating the temporal variation in the b value, which might be used for discriminating foreshock and aftershock behavior.
The efficiency of earthquake clustering investigation is improved as we gain access to larger datasets due to the increase of earthquake detectability. We aim to demonstrate the robustness of a new clustering method, MAP-DBSCAN, and to present a comprehensive analysis of the clustering properties in three major seismic zones of Greece during 2012–2019. A time-dependent stochastic point model, the Markovian Arrival Process (MAP), is implemented for the detection of change-points in the seismicity rate and subsequently, a density-based clustering algorithm, DBSCAN, is used for grouping the events into spatiotemporal clusters. The two-step clustering procedure, MAP-DBSCAN, is compared with other existing methods (Gardner-Knopoff, Reasenberg, Nearest-Neighbor) on a simulated earthquake catalog and is proven highly competitive as in most cases outperforms the tested algorithms. Next, the earthquake clusters in the three areas are detected and the regional variability of their productivity rates is investigated based on the generic estimates of the Epidemic Type Aftershock Sequence (ETAS) model. The seismicity in the seismic zone of Corinth Gulf is characterized by low aftershock productivity and high background rates, indicating the dominance of swarm activity, whereas in Central Ionian Islands seismic zone where main shock-aftershock sequences dominate, the aftershock productivity rates are higher. The productivity in the seismic zone of North Aegean Sea vary significantly among clusters probably due to the co-existence of swarm activity and aftershock sequences. We believe that incorporating regional variations of the productivity into forecasting models, such as the ETAS model, it might improve operational earthquake forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.