This paper presents CU-Track, a multi-camera framework for real-time multi-object tracking. The developed framework includes a processing unit, the target object, and the multi-object tracking algorithm. A PC-cluster has been developed as the processing unit of the framework to process data in real-time. To setup the PC-cluster, two PCs are connected by using PCI interface cards that memory can be shared between the two PCs to ensure high speed data transfer and low latency. A novel mechanism for PC-to-PC communication is proposed. It is realized by a dedicated software processing module called the Cluster Module. Six processing modules have been implemented to realize system operations such as camera calibration, camera synchronization and 3D reconstruction of each target. Multiple spherical objects with the same size are used as the targets to be tracked. Two configurations of them, active and passive, can be used for tracking by the system. The algorithm based on Kalman filter and nearest neighbor searching is developed for multi-object tracking. Two applications have been implemented on the system, which confirm the validity and effectiveness of the developed framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.