<abstract><p>An inductive composition is an operation generalizing from a superposition $ S^n $ on the set of all $ n $-ary terms of type $ \tau $. A binary operation called <italic>inductive product</italic> is obtainable from such composition. It is a generalization of a tree language product but on the set of all $ n $-ary terms of type $ \tau $. Unlike the original one, this inductive product is not associative on the mentioned set. Nonetheless, it turns to be associative on some restricted set. A semigroup arising in this way is the main focus of this paper. We consider its special subsemigroups and semigroup factorizations.</p></abstract>
The set of all [Formula: see text]-ary terms of type [Formula: see text] together with a binary operation derived from a superposition [Formula: see text] forms various forms of semigroups. One may generalize such binary operation by deriving it from an inductive composition of terms and call it an inductive product. However, this operation is not associative on the same base set but it becomes associative when all elements of subterms of a fixed term used in an inductive product except itself are excluded from the base set. Hence, a semigroup is formed. In this paper, we mainly focus on the algebraic structures of this semigroup such as idempotent elements, elements associating with each type of regularity condition, and Green’s relations. The formulae of complexity of inducted terms are also under investigation.
In this paper, the concepts of hybrid pure hyperideals in ordered hypersemigroups are introduced and some algebraic properties of hybrid pure hyperideals are studied. We characterize weakly regular ordered hypersemigroups in terms of hybrid pure hyperideals. Finally, we introduce the concepts of hybrid weakly pure hyperideals and prove that the hybrid hyperideals are hybrid weakly pure hyperideals if such hybrid hyperideals satisfy the idempotent property.
<abstract><p>A superposition is an operation of terms by which we substitute each variable within a term with other forms of terms. With more options of terms to be replaced, an inductive superposition is apparently more general than the superposition. This comes with a downside that it does not satisfy the superassociative property on the set of all terms of a given type while the superposition does. A derived base set of terms on which the inductive superposition is superassociative is given in this paper. A clone-like algebraic structure involving such base set and superposition is the main topic of this paper. Generating systems of the clone-like algebra are characterized and it turns out that the algebra is only free with respect to itself under the certain selections of fixed terms concerning its inductive superposition or the specific type of its base set.</p></abstract>
A linear tree language of type [Formula: see text] is a set of linear terms, terms containing no multiple occurrences of the same variable, of that type. Instead of the usual generalized superposition of tree languages, we define the generalized linear superposition to deal with linear tree languages and study its properties. Using this superposition, we define the product of linear tree languages. This product is not associative on the collection of all linear tree languages, but it is associative on some subsets of this collection whose products of any element in the subsets are nonempty. We classify such subsets and study properties of the obtained semigroup especially idempotent elements, regular elements, and Green’s relations [Formula: see text] and [Formula: see text].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.