Transportation of mesenchymal stem cells (MSCs) under hypothermic conditions in 0.9% normal saline solution (NSS) might increase cell death and alter the stemness of MSCs. The present study aimed to evaluate the effect of proline-based solution (PL-BS) on cell viability and the stemness of newly established canine adipose-derived mesenchymal stem cells (cAD-MSCs) under hypothermic conditions. Characterized cAD-MSCs were stored in 1, 10, and 100 mM PL-BS or NSS at 4°C for 6, 9, and 12 hours prior to an evaluation. The results demonstrated that storage in 1 mM PL-BS for 6 hours decreased cell apoptosis and proliferation ability, but improved cell viability and mitochondrial membrane potential. cAD-MSCs maintained their high expression of CD44 and CD90, but had a low expression of CD34 and MHC class II. Trilineage differentiation ability of cAD-MSCs was not affected by storage in 1 mM PL-BS. Gene expression analysis demonstrated that immunomodulatory genes, including IDO, HGF, PGE-2, and IL-6, were upregulated in cAD-MSCs stored in 1 mM PL-BS. In conclusion, PL-BS can be effectively applied for storing cAD-MSCs under hypothermic conditions. These findings provide a new solution for effective handling of cAD-MSCs which might be promising for clinical applications.
Domestic pigs have become increasingly popular as a model for human diseases such as neurological diseases. Drug discovery platforms have increasingly been used to identify novel compounds that combat neurodegeneration. Currently, bioactive molecules such as melatonin have been demonstrated to offer a neuroprotective effect in several studies. However, a neurodegenerative platform to study novel compounds in a porcine model has not been fully established. In this study, characterized porcine induced neural stem cells (iNSCs) were used for evaluation of the protective effect of melatonin against chemical and pathogenic stimulation. First, the effects of different concentrations of melatonin on the proliferation of porcine iNSCs were studied. Second, porcine iNSCs were treated with the appropriate concentration of melatonin prior to induced degeneration with dimethyl sulfoxide or Zika virus (ZIKV). The results demonstrated that the percentages of Ki67 expression in porcine iNSCs cultured in 0.1, 1, and 10 nM melatonin were not significantly different from that in the control groups. Melatonin at 1 nM protected porcine iNSCs from DMSO-induced degeneration, as confirmed by a dead cell exclusion assay and mitochondrial membrane potential (ΔΨm) analysis. In addition, pretreatment with melatonin reduced the percentage of dead porcine iNSCs after ZIKV infection. Melatonin increased the ΔΨm, resulting in a decrease in cell degeneration. However, pretreatment with melatonin was unable to suppress ZIKV replication in porcine iNSCs. In conclusion, the present study demonstrated the anti-degenerative effect of melatonin against DMSO-and ZIKV-induced degeneration in porcine iNSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.