SummaryObjectiveNerve growth factor (NGF) has a pivotal role in peripheral hyperalgesia and inflammation; anti-NGF antibodies attenuate pain responses in inflammatory pain models, and in people with osteoarthritis (OA) or low back pain. The aim of this study was to characterise the peripheral mechanisms contributing to the analgesic effects of anti-NGF antibody treatment in an established model of joint pain, which mimics key clinical features of OA.DesignEffects of preventative vs therapeutic treatment with an anti-NGF antibody (monoclonal antibody 911: muMab 911 (10 mg/kg, s.c.)) on pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWT)), cartilage damage, synovitis and numbers of subchondral osteoclasts were investigated in the monosodium iodoacetate (MIA) model. Potential direct effects of NGF on receptor activator of nuclear factor kappa-B ligand (RANKL) mediated osteoclastogenesis were investigated in cultured human osteoclasts.ResultsIntra-articular MIA injection resulted in significant pain behaviour, cartilage damage, synovitis and increased numbers of subchondral osteoclasts. Both preventative and therapeutic treatment with muMab 911 significantly prevented, or reversed, MIA-induced pain behaviour, but did not alter cartilage or synovial pathology quantified at the end of the treatment period. NGF did not facilitate RANKL driven osteoclast differentiation in vitro, but preventative or therapeutic muMab 911 reduced numbers of TRAP positive osteoclasts in the subchondral bone.ConclusionsWe demonstrate that anti-NGF antibody treatment attenuates OA pain behaviour despite permitting cartilage damage and synovitis. Indirect effects on subchondral bone remodelling may contribute to the analgesic effects of NGF blockade.
0.025% capsaicin gel is safe and well tolerated, but does not provide significant pain relief in patients with PDN.
BackgroundHarnessing the actions of the resolvin pathways has the potential for the treatment of a wide range of conditions associated with overt inflammatory signalling. Aspirin-triggered resolvin D1 (AT-RvD1) has robust analgesic effects in behavioural models of pain; however, the potential underlying spinal neurophysiological mechanisms contributing to these inhibitory effects in vivo are yet to be determined. This study investigated the acute effects of spinal AT-RvD1 on evoked responses of spinal neurones in vivo in a model of acute inflammatory pain and chronic osteoarthritic (OA) pain and the relevance of alterations in spinal gene expression to these neurophysiological effects.MethodsPain behaviour was assessed in rats with established carrageenan-induced inflammatory or monosodium iodoacetate (MIA)-induced OA pain, and changes in spinal gene expression of resolvin receptors and relevant enzymatic pathways were examined. At timepoints of established pain behaviour, responses of deep dorsal horn wide dynamic range (WDR) neurones to transcutaneous electrical stimulation of the hind paw were recorded pre- and post direct spinal administration of AT-RvD1 (15 and 150 ng/50 μl).ResultsAT-RvD1 (15 ng/50 μl) significantly inhibited WDR neurone responses to electrical stimuli at C- (29 % inhibition) and Aδ-fibre (27 % inhibition) intensities. Both wind-up (53 %) and post-discharge (46 %) responses of WDR neurones in carrageenan-treated animals were significantly inhibited by AT-RvD1, compared to pre-drug response (p < 0.05). These effects were abolished by spinal pre-administration of a formyl peptide receptor 2 (FPR2/ALX) antagonist, butoxy carbonyl-Phe-Leu-Phe-Leu-Phe (BOC-2) (50 μg/50 μl). AT-RvD1 did not alter evoked WDR neurone responses in non-inflamed or MIA-treated rats. Electrophysiological effects in carrageenan-inflamed rats were accompanied by a significant increase in messenger RNA (mRNA) for chemerin (ChemR23) receptor and 5-lipoxygenase-activating protein (FLAP) and a decrease in 15-lipoxygenase (15-LOX) mRNA in the ipsilateral spinal cord of the carrageenan group, compared to controls.ConclusionsOur data suggest that peripheral inflammation-mediated changes in spinal FLAP expression may contribute to the novel inhibitory effects of spinal AT-RvD1 on WDR neuronal excitability, which are mediated by FPR2/ALX receptors. Inflammatory-driven changes in this pathway may offer novel targets for inflammatory pain treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0676-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.