The clinical symptomatology in the X-linked Wiskott-Aldrich syndrome (WAS), a combined immunodeficiency and autoimmune disease resulting from WAS protein (WASp) deficiency, reflects the underlying coexistence of an impaired T helper 1 (T H 1) immunity alongside intact T H 2 immunity. This suggests a role for WASp in patterning T H subtype immunity, yet the molecular basis for the T H 1-T H 2 imbalance in human WAS is unknown. We have discovered a nuclear role for WASp in the transcriptional regulation of the T H 1 regulator gene TBX21 at the chromatin level. In primary T H 1-differentiating cells, a fraction of WASp is found in the nucleus, where it is recruited to the proximal promoter locus of the TBX21 gene, but not to the core promoter of GATA3 (a T H 2 regulator gene) or RORc (a T H 17 regulator gene). Genome-wide mapping demonstrates association of WASp in vivo with the gene-regulatory network that orchestrates T H 1 cell fate choice in the human T H cell genome. Functionally, nuclear WASp associates with H3K4 trimethyltransferase [RBBP5 (retinoblastoma-binding protein 5)] and H3K9/H3K36 tridemethylase [JMJD2A (Jumonji domain-containing protein 2A)] proteins, and their enzymatic activity in vitro and in vivo is required for achieving transcription-permissive chromatin dynamics at the TBX21 proximal promoter in primary differentiating T H 1 cells. During T H 1 differentiation, the loss of WASp accompanies decreased enrichment of RBBP5 and, in a subset of WAS patients, also of filamentous actin at the TBX21 proximal promoter locus. Accordingly, human WASpdeficient T H cells, from natural mutation or RNA interference-mediated depletion, demonstrate repressed TBX21 promoter dynamics when driven under T H 1-differentiating conditions. These chromatin derangements accompany deficient T-BET messenger RNA and protein expression and impaired T H 1 function, defects that are ameliorated by reintroducing WASp. Our findings reveal a
Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase and specifically catalyzes the conversion of PGH2 to PGE2. The present study demonstrates the effect of genetic deletion of mPGES-1 on the developing immunologic responses and its impact on the clinical model of bovine collagen-induced arthritis. mPGES-1 null and heterozygous mice exhibited decreased incidence and severity of arthritis compared with wild-type mice in a gene dose-dependent manner. Histopathological examination revealed significant reduction in lining hyperplasia and tissue destruction in mPGES-1 null mice compared with their wild-type littermates. mPGES-1 deficient mice also exhibited attenuation of mechanical nociception in a gene dose-dependent manner. In addition, mPGES-1 null and heterozygous mice showed a marked reduction of serum IgG against type II collagen, including subclasses IgG1, IgG2a, IgG2b, IgG2c, and IgG3, compared with wild-type mice, which correlated with the reduction in observed inflammatory features. These results demonstrate for the first time that deficiency of mPGES-1 inhibits the development of collagen-induced arthritis, at least in part, by blocking the development of a humoral immune response against type II collagen. Pharmacologic inhibition of mPGES-1 may therefore impact both the inflammation and the autoimmunity associated with human diseases such as rheumatoid arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.