The animation of user avatars plays a crucial role in conveying their pose, gestures, and relative distances to virtual objects or other users. Self‐avatar animation in immersive VR helps improve the user experience and provides a Sense of Embodiment. However, consumer‐grade VR devices typically include at most three trackers, one at the Head Mounted Display (HMD), and two at the handheld VR controllers. Since the problem of reconstructing the user pose from such sparse data is ill‐defined, especially for the lower body, the approach adopted by most VR games consists of assuming the body orientation matches that of the HMD, and applying animation blending and time‐warping from a reduced set of animations. Unfortunately, this approach produces noticeable mismatches between user and avatar movements. In this work we present a new approach to animate user avatars that is suitable for current mainstream VR devices. First, we use a neural network to estimate the user's body orientation based on the tracking information from the HMD and the hand controllers. Then we use this orientation together with the velocity and rotation of the HMD to build a feature vector that feeds a Motion Matching algorithm. We built a MoCap database with animations of VR users wearing a HMD and used it to test our approach on both self‐avatars and other users' avatars. Our results show that our system can provide a large variety of lower body animations while correctly matching the user orientation, which in turn allows us to represent not only forward movements but also stepping in any direction.
In the era of the metaverse, self-avatars are gaining popularity, as they can enhance presence and provide embodiment when a user is immersed in Virtual Reality. They are also very important in collaborative Virtual Reality to improve communication through gestures. Whether we are using a complex motion capture solution or a few trackers with inverse kinematics (IK), it is essential to have a good match in size between the avatar and the user, as otherwise mismatches in self-avatar posture could be noticeable for the user. To achieve such a correct match in dimensions, a manual process is often required, with the need for a second person to take measurements of body limbs and introduce them into the system. This process can be time-consuming, and prone to errors. In this paper, we propose an automatic measuring method that simply requires the user to do a small set of exercises while wearing a Head-Mounted Display (HMD), two hand controllers, and three trackers. Our work provides an affordable and quick method to automatically extract user measurements and adjust the virtual humanoid skeleton to the exact dimensions. Our results show that our method can reduce the misalignment produced by the IK system when compared to other solutions that simply apply a uniform scaling to an avatar based on the height of the HMD, and make assumptions about the locations of joints with respect to the trackers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.