Noise is inevitably common in digital images, leading to visual image deterioration. Therefore, a suitable filtering method is required to lessen the noise while preserving the image features (edges, corners, etc.). This paper presents the efficient type-2 fuzzy weighted mean filter with an adaptive threshold to remove the SAP noise. The present filter has two primary steps: The first stage categorizes images as lightly, medium, and heavily corrupted based on an adaptive threshold by comparing the M-ALD of processed pixels with the upper and lower MF of the type-2 fuzzy identifier. The second stage eliminates corrupted pixels by computing the appropriate weight using GMF with the mean and variance of the uncorrupted pixels in the filter window. Simulation results vividly show that the obtained denoised images preserve image features, i.e., edges, corners, and other sharp structures, compared with different filtering methods. The code and experimented data of the AT-2FF is available on the GitHub platform: https://github.com/vikkyak/Image-Denoising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.