This research paper puts emphasis on using cloud computing with Blockchain (BC) to improve the security and privacy in a cloud. The security of data is not guaranteed as there is always a risk of leakage of users' data. Blockchain can be used in a multi-tenant cloud environment (MTCE) to improve the security of data, as it is a decentralized approach. Data is saved in unaltered form. Also, Blockchain is not owned by a single organization. The encryption process can be done using a Homomorphic encryption (HE) algorithm along with hashing technique, hereby allowing computations on encrypted data without the need for decryption. This research paper is composed of four objectives: Analysis of cloud security using Blockchain technology; Exceptional scenario of Blockchain architecture in an enterprise-level MTCE; Implementation of cipher-text policy attribute-based encryption (CP-ABE) algorithm; Implementation of Merkle tree using Ethereum (MTuE) in a Multi-tenant system. Out of these four objectives, the main focus is on the implementation of CP-ABE algorithm. CP-ABE parameters are proposed for different levels of tenants. The levels include inner tenant, outer tenant, Inner-Outer-Tenant, Inner-Outer-External-Tenant, Outer-Inner-Tenant, External-Outer-Inner-Tenant and the parameters such as token, private key, public key, access tree, message, attribute set, node-level, cipher-text, salting which will help in providing better security using CP-ABE algorithm in a multitenant environment (MTE) where tenants can be provided with different levels of security and achieved 92 percentage of authenticity and access-control of the data.
Authentication, authorization, and data access control are playing major roles in data security and privacy. The proposed model integrated the multi-factor authentication–authorization process with dependable and non-dependable factors and parameters based on providing security for tenants through a hybrid approach of fully homomorphic encryption methodology: the enhanced homomorphic cryptosystem (EHC) and the Brakersky–Gentry–Vaikuntanathan (BGV) scheme. This research was composed of four major elements: the fully homomorphic encryption blended schemes, EHC and BGV; secure token and key implications based on dependable and don-dependable factors; an algorithm for generating the tokens and the suitable keys, depending on the user’s role; and the execution of experimental test cases by using the EHC algorithm for key and token generation, based on dependable and non-dependable parameters and time periods. The proposed approach was tested with 152 end-users by integrating six multi-tenants, five head tenants, and two enterprise levels; and achieved a 92 percent success rate. The research integrated 32-bit plain text in the proposed hybrid approach by taking into consideration the encryption time, decryption time, and key generation time of data transmission via cloud servers. The proposed blended model was efficient in preventing data from ciphertext attacks and achieved a high success rate for transmitting data between the multi-tenants, based on the user-role-user type of enterprise cloud servers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.