Abstract-Ranking thousands of web documents so that they are matched in response to a user query is really a challenging task. For this purpose, search engines use different ranking mechanisms on apparently related resultant web documents to decide the order in which documents should be displayed. Existing ranking mechanisms decide on the order of a web page based on the amount and popularity of the links pointed to and emerging from it. Sometime search engines result in placing less relevant documents in the top positions in response to a user query. There is a strong need to improve the ranking strategy. In this paper, a novel ranking mechanism is being proposed to rank the web documents that consider both the HTML structure of a page and the contextual senses of keywords that are present within it and its back-links. The approach has been tested on data sets of URLs and on their back-links in relation to different topics. The experimental result shows that the overall search results, in response to user queries, are improved. The ordering of the links that have been obtained is compared with the ordering that has been done by using the page rank score. The results obtained thereafter shows that the proposed mechanism contextually puts more related web pages in the top order, as compared to the page rank score.
There was a substantial medicine shortage and an increase in morbidity due to the second wave of the COVID-19 pandemic in India. This pandemic has also had a drastic impact on healthcare professionals' psychological health as they were surrounded by suffering, death, and isolation. Healthcare practitioners in North India were sent a self-administered questionnaire based on the COVID-19 Stress Scale (N = 436) from March to May 2021. With 10-fold cross-validation, extreme gradient boosting (XGBoost) was used to predict the individual stress levels. XGBoost classifier was applied, and classification accuracy was 88%. The results of this research show that approximately 52.6% of healthcare specialists in the dataset exceed the severe psychiatric morbidity standards. Further, to determine which attribute had a significant impact on stress prediction, advanced techniques (SHAP values), and tree explainer were applied. The two most significant stress predictors were found to be medicine shortage and trouble in concentrating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.