Wheat is the major crop plant in many parts of the world. Elevated temperature-induced changes in photosynthetic efficiency were studied in wheat (T. aestivum) leaves by measuring Chl a fluorescence induction kinetics. Detached leaves were subjected to elevated temperature stress of 35 °C, 40 °C or 45 °C. Parameters such as Fv/Fm, performance index (PI), and reaction centre to absorbance ratio (RC/ABS) were deduced using radial plots from fluorescence induction curves obtained with a plant efficiency analyser (PEA). To derive precise information on fluorescence induction kinetics, energy pipeline leaf models were plotted using biolyzer hp3 software. At 35 °C, there was no effect on photosynthetic efficiency, including the oxygen-evolving complex, and the donor side of PSII remained active. At 40 °C, activity was reduced by 14%, while at 45 °C, a K intermediate step was observed, indicating irreversible damage to the oxygen-evolving complex. This analysis can be used to rapidly screen for vitality and stress tolerance characteristics of wheat growing in the field under high temperature stress.
Nitrogen-doped, PEGylated carbon dots (C-dots) have been synthesized for the detection of mercury ions (Hg(2+)). The detection limit was found to be 6.8 nM. However, upon functionalization with dithiothreitol (DTT), it reached to as low as 18 pM. The C-dots-Hg(2+) system was also able to efficiently detect biothiols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.