The binuclear metalloenzyme Helicobacter pylori arginase is important for pathogenesis of the bacterium in the human stomach. Despite conservation of the catalytic residues, this single Trp enzyme has an insertion sequence (--153ESEEKAWQKLCSL165--) that is extremely crucial to function. This sequence contains the critical residues, which are conserved in the homologue of other Helicobacter gastric pathogens. However, the underlying basis for the role of this motif in catalytic function is not completely understood. Here, we used biochemical, biophysical and molecular dynamics simulations studies to determine that Glu155 of this stretch interacts with both Lys57 and Ser152. These interactions are essential for positioning of the motif through Trp159, which is located near Glu155 (His122-Trp159-Tyr125 contact is essential to tertiary structural integrity). The individual or double mutation of Lys57 and Ser152 to Ala considerably reduces catalytic activity with Lys57 to Ala being more significant, indicating they are crucial to function. Our data suggest that the Lys57-Glu155-Ser152 interaction influences the positioning of the loop containing the catalytic His133 so that this His can participate in catalysis, thereby providing a mechanistic understanding into the role of this motif in catalytic function. Lys57 was also found only in the arginases of other Helicobacter gastric pathogens. Based on the non-conserved motif, we found a new molecule, which specifically inhibits this enzyme. Thus, the present study not only provides a molecular basis into the role of this motif in function, but also offers an opportunity for the design of inhibitors with greater efficacy.
Biodesulfurization helps in removal of sulfur from organosulfur present in petroleum fractions. All microorganisms isolated to date harbor a desulfurization operon consisting of three genes dszA , - B and - C which encode for monooxygenases (DszA & C) and desulfinase (DszB). Most of the studies have been carried out using dibenzothiophene as the model organosulfur compound, which is converted into 2 hydroxybiphenyl by a 4S pathway which maintains the calorific value of fuel. There are few studies reported on the regulation of this operon. However, there are no reports on the proteins which can enhance the activity of the operon. In the present study, we used in vitro and in vivo methods to identify a novel TetR family transcriptional regulator from Gordonia sp. IITR100 which functions as an activator of the dsz operon. Activation by TetR family regulator resulted in enhanced levels of desulfurization enzymes in Gordonia sp. IITR100. Activation was observed only when the 385 bp full length promoter was used. Upstream sequences between − 385 and − 315 were found to be responsible for activation. We provide evidence that the TetR family transcription regulator serves as an activator in other biodesulfurizing microorganisms such as Rhodococcus erythropolis IGTS8 and heterologous host Escherichia coli . This is the first report on the isolation of a possible transcriptional regulator that activates the desulfurization operon resulting in improved biodesulfurization. Electronic supplementary material The online version of this article (10.1186/s13568-019-0801-x) contains supplementary material, which is available to authorized users.
Transcription of a gene can be regulated at many different levels. One such fundamental level is interaction between protein and DNA. Protein(s) binds to distinct sites on the DNA, which activate, enhance or repress transcription. Despite being such an important process, very few tools exist to identify the proteins that interact with chromosome, most of which are in vitro in nature. Here, we propose an in vivo based method for identification of DNA binding protein(s) in bacteria where the DNA-protein complex formed in vivo is crosslinked by formaldehyde. This complex is further isolated and the bound proteins are identified. The method was used to isolate promoter DNA binding proteins, which bind and regulate the dsz operon in Gordonia sp. IITR 100 responsible for biodesulfurization of organosulfurs. The promoter binding proteins were identified by MALDI ToF MS/MS and the binding was confirmed by gel shift assay. Unlike other reported in vivo methods, this improved method does not require sequence of the whole genome or a chip and can be scaled up to improve yields.
WhiB is a transcription regulator which has been reported to be involved in the regulation of cell morphogenesis, cell division, antibiotic resistance, stress, etc., in several members of the family Actinomycetes . The present study describes functional characterization of a WhiB family protein, WhiB1 (protein ID: WP_065632651.1), from Gordonia sp. IITR100. We demonstrate that WhiB1 affects chromosome segregation and cell morphology in recombinant Escherichia coli , Gordonia sp. IITR100 as well as in Rhodococcus erythropolis . Multiple sequence alignment suggests that WhiB1 is a conserved protein among members of the family Actinomycetes . It has been reported that overexpression of WhiB1 leads to repression of the biodesulfurization operon in recombinant E. coli , Gordonia sp. IITR100 and R. erythropolis . A WhiB1-mut containing a point mutation Q116A in the DNA binding domain of WhiB1 led to partial alleviation of repression of the biodesulfurization operon. We show for the first time that the WhiB family protein WhiB1 is also involved in repression of the biodesulfurization operon by directly binding to the dsz promoter DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.