In mammals exclusively, the pore-forming Ca2+ release-activating Ca2+ (CRAC) channel subunit, Orai1, occurs in two forms due to alternative translation initiation. The longer, mammal-specific Orai1α contains an additional 63 amino acids upstream of the conserved start site for Orai1β, which occurs at methionine 64 in Orai1α. Orai1 participates in the generation of three distinct Ca2+ currents, including two store-operated currents, Icrac, which involves the Ca2+-sensing protein STIM1 activation of Orai1 channels, and Isoc, which involves a tertiary interaction among Orai1, the transient receptor potential (TRP) family member TRPC1, and STIM1. Orai1 is also a pore-forming subunit of an arachidonic acid (leukotriene C4)-regulated current Iarc that involves interactions of Orai1, Orai3, and STIM1. Here, we evaluated the roles of the two Orai1 forms in the Ca2+ currents Icrac, Isoc, and Iarc. We found that Orai1α and Orai1β are largely interchangeable for Icrac and Isoc, although Orai1α exhibits stronger inhibition by Ca2+. Only the mammalian-specific Orai1α functions in the arachidonic acid-regulated current, Iarc. Thus, alternative translation initiation of Orai1 message produces at least three types of Ca2+ channels with distinct signaling and regulatory properties.
The nourishment of neonates by nursing is the defining characteristic of mammals. However, despite considerable research into the neural control of lactation, an understanding of the signaling mechanisms underlying the production and expulsion of milk by mammary epithelial cells during lactation remains largely unknown. Here we demonstrate that a store-operated Ca 2+ channel subunit, Orai1, is required for both optimal Ca 2+ transport into milk and for milk ejection. Using a novel, 3D imaging strategy, we visualized live oxytocin-induced alveolar unit contractions in the mammary gland, and we demonstrated that in this model milk is ejected by way of pulsatile contractions of these alveolar units. In mammary glands of Orai1 knockout mice, these contractions are infrequent and poorly coordinated. We reveal that oxytocin also induces a large transient release of stored Ca 2+ in mammary myoepithelial cells followed by slow, irregular Ca 2+ oscillations. These oscillations, and not the initial Ca 2+ transient, are mediated exclusively by Orai1 and are absolutely required for milk ejection and pup survival, an observation that redefines the signaling processes responsible for milk ejection. These findings clearly demonstrate that Ca 2+ is not just a substrate for nutritional enrichment in mammals but is also a master regulator of the spatiotemporal signaling events underpinning mammary alveolar unit contraction. Orai1-dependent Ca 2+ oscillations may represent a conserved language in myoepithelial cells of other secretory epithelia, such as sweat glands, potentially shedding light on other Orai1 channelopathies, including anhidrosis (an inability to sweat).calcium signaling | calcium channels | lactation | mammary gland | store-operated calcium entry
Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts.
In this work, we describe a novel polyamidoamine (PAMAM) dendrimer hydrogel (DH) platform with potential for tissue engineering and drug delivery. With PAMAM dendrimer G3.0 being the underlying carrier, polyethylene glycol (PEG) chains of various lengths (MW=1500, 6000, or 12000 gmol−1) were coupled to the dendrimer to different extents, and the resulting PEGylated PAMAM dendrimers were further coupled with acrylate groups to yield photoreactive dendrimer macromonomers for gel formation. It was found that gelation based on photoreactive PAMAM G3.0 macromonomers was restricted by the degree of PEGylation, PEG chain length, and the distribution of acrylate groups on the dendrimer surface. Further, the architecture of the photoreactive macromonomers affects the structural stability and swelling of the resultant networks. A completely crosslinked network (DH-G3.0–12000H) with a high water swelling ratio was created by UV-curing of PAMAM dendrimer G3.0 coupled with 28 PEG 12000 chains in the presence of the eosin Y-based photoinitiating system. The disintegration of DH-G3.0–12000H was pH-insensitive. DH-G3.0–12000H was found to have similar cytocompatibility to uncrosslinked G3.0–12000H but have a significantly lower cellular uptake by macrophages. With PAMAM dendrimer G3.5 being the underlying carrier, the dendrimer modified with 43 PEG 1500 chains was able to form a completely crosslinked network (DH-G3.50–1500H) by UV-curing in the presence of the eosin Y-based photoinitiating system. DH-G3.50–1500H exhibited pH-dependent disintegration. Its disintegration ratio increased with pH. PAMAM dendrimer hydrogels uniquely express the structural characteristics of both PEG hydrogel and PAMAM dendrimer and have potential for various applications in tissue engineering and drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.