We present a novel caching and coded delivery scheme for a multi-access network where multiple users can have access to the same cache (shared cache) and multiple caches can be accessed by the same user. This scheme is obtained from resolvable designs satisfying certain conditions which we call cross resolvable designs. To be able to compare different multi-access coded schemes with different number of users we normalize the rate of the schemes by the number of users served. Based on this per-user-rate we show that our scheme performs better than the well known Maddah-Ali -Niesen (MaN) scheme and the recently proposed ("Multi-access coded caching: gains beyond cache-redundancy" by Serbetci, Parrinello and Elia) SPE scheme. It is shown that the resolvable designs from affine planes are cross resolvable designs and our scheme based on these performs better than the MaN scheme for large memory size cases. The exact size beyond which our performance is better is also presented. The SPE scheme considers only the cases where the product of the number of users and the normalized cache size is 2, whereas the proposed scheme allows different choices depending on the choice of the cross resolvable design.
We present a novel caching and coded delivery scheme for a multi-access network where multiple users can have access to the same cache (shared cache) and multiple caches can be accessed by the same user. This scheme is obtained from resolvable designs satisfying certain conditions which we call cross resolvable designs. To be able to compare different multi-access coded schemes with different number of users we normalize the rate of the schemes by the number of users served. Based on this per-user-rate we show that our scheme performs better than the well known Maddah-Ali -Niesen (MaN) scheme and the recently proposed ("Multi-access coded caching: gains beyond cache-redundancy" by Serbetci, Parrinello and Elia) SPE scheme. It is shown that the resolvable designs from affine planes are cross resolvable designs and our scheme based on these performs better than the MaN scheme for large memory size cases. The exact size beyond which our performance is better is also presented. The SPE scheme considers only the cases where the product of the number of users and the normalized cache size is 2, whereas the proposed scheme allows different choices depending on the choice of the cross resolvable design.
Multi-access coded caching schemes from cross resolvable designs (CRD) have been reported recently [7]. To be able to compare coded caching schemes with different number of users and possibly with different number of caches a new metric called rate-per-user was introduced and it was shown that under this new metric the schemes from CRDs perform better than the Maddah-Ali-Niesen scheme in the large memory regime. In this paper a new class of CRDs is presented and it is shown that the multi-access coded caching schemes derived from these CRDs perform better than the Maddah-Ali-Niesen scheme in the entire memory regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.