Several proteins with limited cell type distribution have been shown to bind lactoferrin. However, except in the case of hepatic and intestinal cells, these have not been definitively identified and characterized. Here we report that the multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a novel receptor for lactoferrin (Lf) in macrophages. GAPDH is a well-known moonlighting protein, and previous work from our laboratory has indicated its localization on macrophage cell surfaces, wherein it functions as a transferrin (Tf) receptor. The K(D) value for GAPDH-lactoferrin interaction was determined to be 43.8 nmol/L. Utilizing co-immunoprecipitation, immunoflorescence, and immunogold labelling electron microscopy we could demonstrate the trafficking of lactoferrin to the endosomal compartment along with GAPDH. We also found that upon iron depletion the binding of lactoferrin to macrophage cell surface is enhanced. This correlated with an increased expression of surface GAPDH, while other known lactoferrin receptors CD14 and lipoprotein receptor-related protein (LRP) were found to remain unaltered in expression levels. This suggests that upon iron depletion, cells prefer to use GAPDH to acquire lactoferrin. As GAPDH is an ubiquitously expressed molecule, its function as a receptor for lactoferrin may not be limited to macrophages.
Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect’s an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.