Abstract. Khoo DH, Shivanand P, Taha H. 2022. Short Communication: Determination of crude oil degradation efficiency of biofilm producing bacteria isolated from oil contaminated site. Biodiversitas 23: 4138-4143. Microbes have gained much attention for their application in the bioremediation of petroleum contaminated areas, and biofilm producing bacteria are considered potential candidates for this purpose. The aim of this study was to screen six oil degrading bacterial strains for their ability to form biofilm, and to measure the crude oil degradation efficiency of selected strains. It was found that only two strains, Micrococcus sp. UBDBH15 and Pseudomonas sp. UBDBH26 were categorized as strong biofilm producers, with the latter showing the highest amount of biofilm formed. Under the conditions tested, Pseudomonas sp. UBDBH26 was also found to have the highest degradation rate (0.0047 g/day) with a significant degradation of 7.07 ± 3.02 and 11.38 ± 2.93 % of crude oil after 7 and 14 days respectively. Micrococcus sp. UBDBH15 had a lower rate of degradation (0.0033 g/day), resulting in a non-significant degradation. However, in comparison with a non-biofilm producer, Enterobacter sp. UBDBH06, this study suggested that biofilm might enhance the degradation of oil, but further studies are needed to confirm this assumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.