Glaucoma is a complex group of diseases wherein a selective degeneration of retinal ganglion cells (RGCs) leads to irreversible loss of vision. A comprehensive approach to glaucomatous RGC degeneration may include stem cells to functionally replace dead neurons through transplantation and understand RGCs vulnerability using a disease in a dish stem cell model. Both approaches require the directed generation of stable, functional, and target-specific RGCs from renewable sources of cells, i.e., the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we demonstrate a rapid and safe, stage-specific, chemically defined protocol that selectively generates RGCs across species, including human, by recapitulating the developmental mechanism. The de novo generated RGCs from pluripotent cells are similar to native RGCs at the molecular, biochemical, functional levels. They also express axon guidance molecules, and discriminate between specific and non-specific targets, and are non-tumorigenic.
The poor axon regeneration in the central nervous system (CNS) often leads to permanent functional deficit following disease or injury. For example, degeneration of retinal ganglion cell (RGC) axons in glaucoma leads to irreversible loss of vision. Here, we have tested the hypothesis that the mTOR pathway regulates the development of human RGCs and that its recruitment after injury facilitates axon regeneration. We observed that the mTOR pathway is active during RGC differentiation, and using the induced pluripotent stem cell model of neurogenesis show that it facilitates the differentiation, function and neuritogenesis of human RGCs. Using a microfluidic model, we demonstrate that recruitment of the mTOR pathway facilitates human RGC axon regeneration after axotomy, providing evidence that the recapitulation of developmental mechanism(s) might be a viable approach for facilitating axon regeneration in the diseased or injured human CNS, thus helping to reduce and/or recover loss of function.
Glaucoma represents a group of multifactorial diseases with a unifying pathology of progressive retinal ganglion cell (RGC) degeneration, causing irreversible vision loss. To test the hypothesis that RGCs are intrinsically vulnerable in glaucoma, we have developed an in vitro model using the SIX6 risk allele carrying glaucoma patient-specific induced pluripotent stem cells (iPSCs) for generating functional RGCs. Here, we demonstrate that the efficiency of RGC generation by SIX6 risk allele iPSCs is significantly lower than iPSCs-derived from healthy, age- and sex-matched controls. The decrease in the number of RGC generation is accompanied by repressed developmental expression of RGC regulatory genes. The SIX6 risk allele RGCs display short and simple neurites, reduced expression of guidance molecules, and immature electrophysiological signature. In addition, these cells have higher expression of glaucoma-associated genes, CDKN2A and CDKN2B, suggesting an early onset of the disease phenotype. Consistent with the developmental abnormalities, the SIX6 risk allele RGCs display global dysregulation of genes which map on developmentally relevant biological processes for RGC differentiation and signaling pathways such as mammalian target of rapamycin that integrate diverse functions for differentiation, metabolism, and survival. The results suggest that SIX6 influences different stages of RGC differentiation and their survival; therefore, alteration in SIX6 function due to the risk allele may lead to cellular and molecular abnormalities. These abnormalities, if carried into adulthood, may make RGCs vulnerable in glaucoma. Stem Cells 2017;35:2239-2252.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.