In this work, the effects of milling techniques on Pr-substituted YBa2Cu3O7-y (YPrBCO) particles were investigated. The Pr-substituted YBa2Cu3O7-y powders were prepared by solid-state reaction method. The stoichiometric mixtures of Y2O3, BaCO3, CuO and Pr6O11 starting powders were calcined at 880 °C for 12 h in air to form respective compounds. The resulting products were milled for 4 – 12 h using the conventional ball milling technique and for 4 h using the high-energy planetary ball milling method. The phase and structure identification of powders were characterized by X-ray diffraction (XRD) technique. The microstructure and chemical composition were studied using scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS). The XRD patterns indicated that the pure phase of YPrBCO powders was obtained. For this material system, the conventional ball mill technique gave particles having a relatively wide particle size distribution with a maximum size of ~2 μm regardless of milling time. In contrast, the narrower particle size distribution was observed for the YPrBCO powder obtained from the high-speed ball milling method and the largest particle size did not exceed 100 nm. These results showed that the powder produced by the high-speed ball milling technique could have a potential use in colloidal solution for printed thermoelectric film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.