Background Immunotherapy is an emerging approach in cancer treatment that activates the host immune system to destroy cancer cells expressing unique peptide signatures (neoepitopes). Administrations of cancer-specific neoepitopes in the form of synthetic peptide vaccine have been proven effective in both mouse models and human patients. Because only a tiny fraction of cancer-specific neoepitopes actually elicits immune response, selection of potent, immunogenic neoepitopes remains a challenging step in cancer vaccine development. A basic approach for immunogenicity prediction is based on the premise that effective neoepitope should bind with the Major Histocompatibility Complex (MHC) with high affinity. Results In this study, we developed MHCSeqNet, an open-source deep learning model, which not only outperforms state-of-the-art predictors on both MHC binding affinity and MHC ligand peptidome datasets but also exhibits promising generalization to unseen MHC class I alleles. MHCSeqNet employed neural network architectures developed for natural language processing to model amino acid sequence representations of MHC allele and epitope peptide as sentences with amino acids as individual words. This consideration allows MHCSeqNet to accept new MHC alleles as well as peptides of any length. Conclusions The improved performance and the flexibility offered by MHCSeqNet should make it a valuable tool for screening effective neoepitopes in cancer vaccine development. Electronic supplementary material The online version of this article (10.1186/s12859-019-2892-4) contains supplementary material, which is available to authorized users.
Immunotherapy is an emerging approach in cancer treatment that activates the host immune system to destroy cancer cells that express unique peptide signatures (neoepitopes). Administrations of cancer-specific neoepitopes in the form of synthetic peptide vaccine have been proven effective in both mouse models and human patients. Because only a tiny fraction of cancer-specific neoepitopes actually elicit immune response, selection of potent, immunogenic neoepitopes remains a challenging step in cancer vaccine development. A basic approach for immunogenicity prediction is based on the premise that effective neoepitope should bind with the Major Histocompatibility Complex (MHC) with high affinity. In this study, we developed MHCSeqNet, an open-source deep learning model, which not only competes favorably with state-of-the-art predictors but also exhibits promising generalization to new MHC class I and class II alleles. MHCSeqNet employed neural network architectures developed for natural language processing to model amino acid sequence representations of MHC allele and epitope peptide as sentences with amino acids as individual words. This consideration allows MHCSeqNet to accept new MHC alleles as well as peptides of any length. The flexibility offered by MHCSeqNet should make it a valuable tool for screening effective neoepitopes in cancer vaccine development.Availability and implementation https://github.com/cmbcu/MHCSeqNet
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.