Background: Oligodendrocytes are a type of glial cells that synthesize the myelin sheath around the axons and are critical for the nerve conduction in the CNS. Oligodendrocyte death and defects are the leading causes of several myelin disorders such as multiple sclerosis, progressive multifocal leukoencephalopathy, periventricular leukomalacia, and several leukodystrophies. Temporal activation of the Sonic Hedgehog (SHH) pathway is critical for the generation of oligodendrocyte progenitors, and their differentiation and maturation in the brain and spinal cord during embryonic development in mammals. Methods: Our protocol utilized adherent cultures of human induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESCs) with a green fluorescent protein (GFP) reporter knocked into one allele of the OLIG2 gene locus, dual SMAD inhibition, and transient partial inhibition of glioma-associated oncogene 1 (GLI1) by the small molecule GANT61 during the formation of the SOX2/PAX6-positive neural stem cells (NSCs). The SHH pathway was later restimulated by a Smoothened agonist purmorphamine to induce the generation of OLIG2 glial precursors. One hundred ninety-two individual oligodendrocyte precursor cells (OPCs) from GANT61 and control group were analyzed by single-cell RNA sequencing (RNA-Seq). Results: We demonstrate here that transient and partial inhibition of the SHH pathway transcription factor GLI1 in NSCs by a small molecule inhibitor GANT61 was found to generate OPCs that were more migratory and could differentiate earlier toward myelin-producing oligodendrocytes. Single-cell transcriptomic analysis (RNA-Seq) showed that GANT61-NSC-derived oligodendrocyte precursor cells (OPCs) had differential activation of some of the genes in the cytoskeleton rearrangement pathways that are involved in OPC motility and induction of maturation. At the protein level, this was also associated with higher levels of myelin-specific genes in the GANT61 group compared to controls. GANT61-NSC-derived OPCs were functional and could generate compact myelin in vitro and in vivo after transplantation in myelin-deficient shiverer mice. Conclusions: This is a small molecule-based in vitro protocol that leads to the faster generation of functional oligodendrocytes. The development of protocols that lead to efficient and faster differentiation of oligodendrocytes from progenitors provides important advances toward the development of autologous neural stem cell-based therapies using human iPSCs.
Stenotrophomonas maltophilia MfsA (Smlt1083) is an efflux pump in the major facilitator superfamily (MFS). Deletion of mfsA renders the strain more susceptible to paraquat, but no alteration in the susceptibility levels of other oxidants is observed. The expression of mfsA is inducible upon challenge with redox cycling/superoxide-generating drug (paraquat, menadione and plumbagin) treatments and is directly regulated by SoxR, which is a transcription regulator and sensor of superoxide-generating agents. Analysis of mfsA expression patterns in wild-type and a soxR mutant suggests that oxidized SoxR functions as a transcription activator of the gene. soxR (smlt1084) is located in a head-to-head fashion with mfsA, and these genes share the -10 motif of their promoter sequences. Purified SoxR specifically binds to the putative mfsA promoter motifs that contain a region that is highly homologous to the consensus SoxR binding site, and mutation of the SoxR binding site abolishes binding of purified SoxR protein. The SoxR box is located between the putative -35 and -10 promoter motifs of mfsA; and this position is typical for a promoter in which SoxR acts as a transcriptional activator. At the soxR promoter, the SoxR binding site covers the transcription start site of the soxR transcript; thus, binding of SoxR auto-represses its own transcription. Taken together, our results reveal for the first time that mfsA is a novel member of the SoxR regulon and that SoxR binds and directly regulates its expression.
In Xanthomonas campestris pv. campestris, SoxR likely functions as a sensor of redox-cycling drugs and as a transcriptional regulator. Oxidized SoxR binds directly to its target site and activates the expression of xcc0300, a gene that has protective roles against the toxicity of redox-cycling compounds. In addition, SoxR acts as a noninducible repressor of its own expression. X. campestris pv. campestris requires SoxR both for protection against redox-cycling drugs and for full virulence on a host plant. The X. campestris model of the gene regulation and physiological roles of SoxR represents a novel variant of existing bacterial SoxR models.
Xanthomonas campestris pv. campestris causes black rot in cruciferous crops. Hydrogen peroxide (H(2)O(2)) production and accumulation is an important initial response in plant defense against invading microbes. The role of genes involved in the bacterial H(2)O(2) protection system in pathogenicity was evaluated. Mutants of katA (encoding a monofunctional catalase) and, to a lesser extent, katG (encoding a catalase-peroxidase) and oxyR (encoding a H(2)O(2) sensor and a transcription regulator), are hypersensitive to H(2)O(2) treatments that mimic the plant H(2)O(2) burst. These data correlate with the results of pathogenicity testing that show katA, katG, and oxyR mutants are avirulent on a compatible plant. Moreover, exposure to H(2)O(2) (1, 2, and 4 mM) highly induces the expression of genes in the OxyR regulon, including katA, katG, and ahpC. The avirulent phenotype of the oxyR mutant is partly because of its inability to mount an adaptive response upon exposure to an H(2)O(2) burst. Our data provide insights into important roles of a transcription regulator and other genes involved in peroxide stress protection in the virulence of X. campestris pv. campestris.
The impairment in the regulation of the physiological process in the inflammatory phase of wound healing results in oxidative stress damage, which increases the severity and extends the healing time. In this study, we aimed to evaluate the radical scavenging properties of Coccinia leaf extract and its ability to ameliorate a migration process in vitro. Coccinia is a medicinal plant that was used in ancient times for relieving insect bite itching and swelling. However, the role of Coccinia leaf extract as an antioxidant related to the process of wound healing has never been studied. In this study, we demonstrated that the leaf extract possessed antioxidant properties that acted as a proton donor to neutralize reactive oxygen species with the IC50 value of 4.85 mg/mL of the extract. It could chelate iron with the IC50 value of 21.39 mg/mL of the extract. The leaf extract protected the human fibroblasts and keratinocytes from hydrogen peroxide-induced oxidative stress by increasing cell survival rate by more than 20% in all test doses. The protective property was dose-dependently correlated with the decrease in reactive oxygen species formation. In addition, the leaf extract enhanced the cell migration rate of fibroblasts and keratinocytes up to 23% compared with vehicle control. The results suggested that Coccinia leaf extract may be a potential herb for increasing the wound healing process with its antioxidant capacity and can be used as an herbal ingredient for the utilization of skincare products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.