The extended Kantorovich method originally proposed by Kerr in the year ¡968 for twodimensional (2D) elasticity problems is further extended to the three-dimensional (3D) elasticity problem of a transversely loaded laminated angle-ply flat panel in cylindrical bending. The significant extensions made to the method in this study are (1) the application to the 3D elasticity problem involving an in-plane direction and a thickness direction instead of both in-plane directions in 2D elasticity problems, (2) the treatment of the nonhomogeneous boundary conditions encountered in the thickness direction, and (3) the use of a mixed variational principle to obtain the governing differential equations in both directions in terms of displacements as well as stresses. This approach not only ensures exact satisfaction of all boundary conditions and continuity conditions at the layer interfaces, but also guarantees the same order of accuracy for all displacement and stress components. The method eventually leads to a set of eight algebraic-ordinary differential equations in the in-plane direction and a similar set of equations in the thickness direction for each layer of the laminate. Exact closed form solutions are obtained for each system of equations. It is demonstrated that the iterative procedure converges very fast irrespective of whether or not the initial guess functions satisfy the boundary conditions. Comparisons of the present predictions with the available 3D exact solutions and 3D finite element solutions for laminated cross-ply and angle-ply composite panels under different boundaiy conditions show a close agreement between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.