The global HIV epidemic continues to grow in certain regions while contracting in others, necessitating a broadened research agenda, including clinical pharmacology of tuberculosis, hepatitis, malaria, and immune activation/inflammation, underscoring the need for a coordinated quality assurance approach. A comprehensive program has been developed and implemented by the University at Buffalo HIV Clinical Pharmacology Quality Assurance and Quality Control Program, funded by the National Institutes of Health. Clinical Pharmacology & Therapeutics (2013); 93 6, 479‐482. doi:
Among National Institutes of Health (NIH) HIV Research Networks conducting multicenter trials, samples from protocols that span several years are analyzed at multiple clinical pharmacology laboratories (CPLs) for multiple antiretrovirals (ARV). Drug assay data are, in turn, entered into study-specific datasets that are used for pharmacokinetic analyses, merged to conduct cross-protocol pharmacokinetic analysis and integrated with pharmacogenomics research to investigate pharmacokinetic-pharmacogenetic associations. The CPLs participate in a semi-annual proficiency testing (PT) program implemented by the Clinical Pharmacology Quality Assurance (CPQA) program. Using results from multiple PT rounds, longitudinal analyses of recovery are reflective of accuracy and precision within/across laboratories. The objectives of this longitudinal analysis of PT across multiple CPLs were to develop and test statistical models that longitudinally: (1)assess the precision and accuracy of concentrations reported by individual CPLs; (2)determine factors associated with round-specific and long-term assay accuracy, precision and bias using a new regression model. A measure of absolute recovery is explored as a simultaneous measure of accuracy and precision. Overall, the analysis outcomes assured 97% accuracy (±20% of the final target concentration of all (21)drug concentration results reported for clinical trial samples by multiple CPLs).Using the CLIA acceptance of meeting criteria for ≥2/3 consecutive rounds, all ten laboratories that participated in three or more rounds per analyte maintained CLIA proficiency. Significant associations were present between magnitude of error and CPL (Kruskal Wallis [KW]p<0.001), and ARV (KW p<0.001).
The increasing prevalence and use of herbal mixtures containing synthetic cannabinoids presents a growing public health concern and legal challenge for society. In contrast to the plant-derived cannabinoids in medical marijuana and other cannabinoid-based therapeutics, the commonly encountered synthetic cannabinoids in these mendaciously labeled products constitute a structurally diverse set of compounds of relatively unknown pharmacology and toxicology. Indeed, the use of these substances has been associated with an alarming number of hospitalizations and emergency room visits. Moreover, there are already several hundred known cannabinoid agonist compounds that could potentially be used for illicit purposes, posing an additional challenge for public health professionals and law enforcement efforts, which often require the detection and identification of the active ingredients for effective treatment or prosecution. A solid-phase microextraction headspace gas chromatography-mass spectrometry method is shown here to allow for rapid and reliable detection and structural identification of many of the synthetic cannabinoid compounds that are currently or could potentially be used in herbal smoking mixtures. This approach provides accelerated analysis and results that distinguish between structural analogs within several classes of cannabinoid compounds, including positional isomers. The analytical results confirm the continued manufacture and distribution of herbal materials with synthetic cannabinoids and provide insight into the manipulation of these products to avoid legal constraints and prosecution.
BackgroundWhen shared by people who inject drugs, needles and syringes with different dead space may affect the probability of HIV and hepatitis C virus (HCV) transmission differently.MethodsWe measured dead space in 56 needle and syringe combinations obtained from needle and syringe programs across 17 countries in Europe and Asia. We also calculated the amounts of blood and HIV that would remain in different combinations following injection and rinsing.ResultsSyringe barrel capacities ranged from 0.5 to 20 mL. Needles ranged in length from 8 to 38 mm. The average dead space was 3 μL in low dead space syringes with permanently attached needles, 13 μL in high dead space syringes with low dead space needles, 45 μL in low dead space syringes with high dead space needles, and 99 μL in high dead space syringes with high dead space needles. Among low dead space designs, calculated volumes of blood and HIV viral burden were lowest for low dead space syringes with permanently attached needles and highest for low dead space syringes with high dead space needles.ConclusionThe dead space in different low dead space needle and syringe combinations varied substantially. To reduce HIV transmission related to syringe sharing, needle and syringe programs need to combine this knowledge with the needs of their clients.Electronic supplementary materialThe online version of this article (10.1186/s12954-017-0207-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.