Artificial Intelligence revolutionizes the drug development process that can quickly identify potential biologically active compounds from millions of candidate within a short span of time. The present review is an overview based on some applications of Machine Learning based tools such as GOLD, DeepPVP, LIBSVM, etc and the algorithms involved such as support vector machine (SVM), random forest (RF), decision trees and artificial neural networks (ANN) etc in the various stages of drug designing and development. These techniques can be employed in SNP discoveries, drug repurposing, ligand-based drug design (LBDD), Ligand-based Virtual Screening (LBVS) and Structure-based virtual screening (SBVS), Lead identification, quantitative structure-activity relationship (QSAR) modeling, and ADMET analysis. It is demonstrated that SVM exhibited better performance in indicating that the classification model will have great applications on human intesti-nal absorption (HIA) predictions. Successful cases have been reported which demonstrate the efficiency of SVM and RF model in identifying JFD00950 as a novel compound targeting against a colon cancer cell line, DLD-1 by inhibition of FEN1 cytotoxic and cleavage activity. Furthermore, a QSAR model was also used to predicts flavonoid inhibitory effects on AR activity as a potent treatment for diabetes mellitus (DM), using ANN. Hence, in the era of big data, ML approaches evolved as a powerful and efficient way to deal with the huge amounts of generated data from modern drug discovery in order to model small-molecule drugs, Gene Biomarkers, and identifying the novel drug targets for various diseases.
No abstract
<p><span lang="EN-US">Today during ‘Covid-20’, people are more inclined towards online shopping. In general practice, analysis of browsing history and customer’s micro behaviour against online shopping habits have been used for future suggestions. Due to this, the predictions made were suffereing from over-similarity problem and the user was unable to find any novelty in the recommended items. Observing these issues, e-shopping quality can be enhanced by adding a factor other than similarity. The current research suggests and advertise those products which belongs to a person’s region. For this research work the data has been collected on the basis of area-wise, like, country-based seggregation. Here the considered dataset belongs to country, ‘India’, its culture, its handicraft and its citizens. Datasets and their combinations based on multiple attributes are input for the proposed predictive system. In this paper, existing data is also considered for collecting customers demographic details which is further mapped with the area-wise dataset. Also, a framework has been proposed which uses database and user query as input for its predictive system in order to generate default suggestions for the user other than the submitted query also.</span></p>
In today’s life consumer reviews are the part of everyday life. User read the reviews before purchase, or stores it for finding the best product through comparison of the product review. From customers view point the reviews play vital role to make a decision regarding an online purchase as well as spammers to write the fake reviews which can increase or defame the reputation of any product. Spammers are using these platforms illegally for financial benefits/incentives are involved in writing fake reviews and they are trying to achieve their motive in terms of financial or to defeat the competitor which causes an explosive growth of sentiment/opinion spamming of writing forged/fake reviews. The present studies and research are used to analyse and categorize the opinion spamming into three different detection targets opinion spam, spammers, and to find the collusive opinion spammer groups so that false opinions can be avoided. Opinion spamming further divided into three different types based on textual and linguistic, behavioral, and relational features. The motivation behind this work is to study the dynamics of spam diffusion and extract the latent features that fuel the diffusion process. The user-based features and content-based features have been used for the categorization of spam/non-spam content. The contributions of this work are building the datasetwhich assists as the ground-truth for classifying/analyzing the variation of fraud/genuine and non-spam/spam information diffusion and to analyze the effects of topics over the diffusibility of non-spam and spam evidences/information. The paper, carried out an in-depth analysis of Twitter Spam diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.