Neural network modeling has become a special interest for many engineers and scientists to be utilized in different types of data as time series, regression, and classification and have been used to solve complicated practical problems in different areas, such as medicine, engineering, manufacturing, military, business. To utilize a prediction model that is based upon artificial neural network (ANN), some challenges should be addressed that optimal designing and training of ANN are major ones. ANN can be defined as an optimization task because it has many hyper parameters and weights that can be optimized. Metaheuristic algorithms such as swarm intelligence-based methods are a category of optimization methods that aim to find an optimal structure of ANN and to train the network by optimizing the weights. One of the commonly used swarm intelligence-based algorithms is particle swarm optimization (PSO) that can be used for optimizing ANN. In this study, we review the conducted research works on optimizing the ANNs using PSO. All studies are reviewed from two different perspectives: optimization of weights and optimization of structure and hyper parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.