Recent developments of an advanced numerical model for Continuous Casting of steel unveiled at the previous 2010 CSSCR Conference in Sapporo, Japan are presented. These include coupling of the existing multiphase, heat transfer and solidification model to argon injection for tracking bubble trajectories in the SEN, metal bulk and across the slag bed after passing through the metal surface. Hence, description of a method for adding gas injection in combination with a multiphase model for tracking metal/slag interfaces (Discrete Phase Model + Volume Of Fluid, DPM+VOF) is given.Validation is supported by tests on a revamped Continuous Casting Simulator (CCS-1) based on a low melting point alloy, which can realistically replicate the flow conditions in the caster. Metal-slag-argon flow predictions were compared to observations in the physical model showing good agreement on features such as discharging jets, rolls, standing waves and argon distribution measured through a variety of techniques such as ultrasound, electromagnetic probes and video sequences. Ultimately, the model makes possible the prediction of stable or unstable flows within the mould as a function of different argon flow-rates and bubble sizes. Application to industrial practice is an ongoing task and preliminary results are illustrated. The robustness of the model combined with direct observations in CCS-1 make possible the description of phenomena difficult to observe in the caster (e.g. argon injection and metal flow), but critical for the stability of the process and the quality of cast products.
Surface defects are recurrent problems during Continuous Casting of steel due to the introduction of new grades that are often difficult to cast, as well as the everlasting pursuit for higher quality and improved yield. Accordingly, numerical modelling has become a ubiquitous tool to analyse the formation mechanisms of such defects. However, industrial application of simulations is often hampered by oversimplifications and omissions of important process details such as variations in material properties, specific casting practices or shortcomings regarding fundamental metallurgical concepts. The present manuscript seeks to create awareness on these issues by visiting key notions such as slag infiltration, interfacial resistance and Lubrication Index. This is done from a conceptual point of view based on industrial observations and numerical modelling experiences. The latter allows a re-formulation of outdated concepts and misconceptions regarding the influence of fluid flow, heat transfer and solidification on lubrication and defect formation. Additionally, the manuscript addresses common challenges and constraints that occur during industrial implementation of numerical models such as the lack of high-temperature material data for slags. Finally, the manuscript provides examples of improvements on product quality and process stability that can be achieved through a holistic approach which combines modelling with laboratory tests, experiences from operators and direct plant measurements.KEY WORDS: numerical modelling; Continuous Casting; defects; lubrication; powder consumption.introduced as an alternative to study such issues in a more cost-efficient way than using traditional trial-error tests in the plant. Starting in the late 70's and 80's with the advent of personal computers, the first generation of models managed to predict the overall behaviour of the caster based on empirical data. 5-7) Subsequently, models in the 90's added Computational Fluid Dynamics (CFD) and solidification to casting simulations. [8][9][10] Faster computers and improved codes allowed huge progress regarding multi-phase applications (e.g. bubbles and inclusions) combined with calculations of flow and solidification in the past decade. 11-14)Currently, a wide variety of commercial and in-house codes are available for CC modelling such as PROCAST, COMSOL, TEMPSIMU, CON1D/2D, etc. [15][16][17] Moreover, a recent trend is the development of thermo-mechanical models coupled to flow dynamics for solving the combined problem of flow, solidification and stress-strain during casting. 18,19) Of all these, PHYSICA and THERCAST are two of the most promising approaches; which allow: a) 3D unstructured -mesh, multi-physics model using a combina-
Abstract. One of the main targets for Continuous Casting (CC) modelling is the actual prediction of defects during transient events. However, the majority of CC models are based on a statistical approach towards flow and powder performance, which is unable to capture the subtleties of small variations in casting conditions during real industrial operation or the combined effects of such changes leading eventually to defects. An advanced Computational Fluid Dynamics (CFD) model; which accounts for transient changes on lubrication during casting due to turbulent flow dynamics and mould oscillation has been presented on MCWASP XIV (Austria) to address these issues. The model has been successfully applied to the industrial environment to tackle typical problems such as lack of lubrication or unstable flows. However, a direct application to cracking had proven elusive. The present paper describes how results from this advanced CFD-CC model have been successfully coupled to structural Finite Element Analysis (FEA) for prediction of stress-strains as a function of irregular lubrication conditions in the mould. The main challenge for coupling was the extraction of the solidified shell from CFD calculations (carried out with a hybrid structured mesh) and creating a geometry by using iso-surfaces, re-meshing and mapping loads (e.g. temperature, pressure and external body forces), which served as input to mechanical stress-strain calculations. Preliminary results for CC of slabs show that the temperature distribution within the shell causes shrinkage and thermal deformation; which are in turn, the main source of stress. Results also show reasonable stress levels of 10-20 MPa in regions, where the shell is thin and exposed to large temperature gradients. Finally, predictions are in good agreement with prior works where stresses indicate compression at the slab surface, while tension is observed at the interior; generating a characteristic stress-strain state during solidification in CC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.