Our subjective sense of time is intertwined with a plethora of perceptual, cognitive and motor functions, and likewise, the brain is equipped to expertly filter, weight and combine these signals for seamless interactions with a dynamic world. Until relatively recently, the literature on time perception has excluded the influence of simultaneous motor activity, yet it has been found that motor circuits in the brain are at the core of most timing functions. Several studies have now identified that concurrent movements exert robust effects on perceptual timing estimates, but critically have not assessed how humans consciously judge the duration of their own movements. This creates a gap in our understanding of the mechanisms driving movement-related effects on sensory timing. We sought to address this gap by administering a sensorimotor timing task in which we explicitly compared the timing of isolated auditory tones and arm movements, or both simultaneously. We contextualized our findings within a Bayesian cue combination framework, in which separate sources of temporal information are weighted by their reliability and integrated into a unitary time estimate that is more precise than either unisensory estimate. Our results revealed differences in accuracy between auditory, movement and combined trials, and (crucially) that combined trials were the most accurately timed. Under the Bayesian framework, we found that participants’ combined estimates were more precise than isolated estimates, yet were sub-optimal when compared with the model’s prediction, on average. These findings elucidate previously unknown qualities of conscious motor timing and propose computational mechanisms that can describe how movements combine with perceptual signals to create unified, multimodal experiences of time.
Our subjective sense of time is intertwined with a plethora of perceptual, cognitive, and motor functions, and likewise, the brain is equipped to expertly filter, weight, and combine these signals for seamless interactions with a dynamic world. Until relatively recently, the literature on time perception has excluded the influence of motor activity, yet, it has been found that motor circuits in the brain are at the core of most timing functions. Several studies have now identified that concurrent movements exert robust effects on perceptual timing estimates, but critically, have not assessed how humans consciously judge the duration of their own movements. This creates a gap in our understanding of the mechanisms driving movement-related effects on sensory timing. We sought to address this gap by administering a sensorimotor timing task in which we explicitly compared the timing of isolated auditory tones and arm movements, or both simultaneously. We contextualized our findings within a Bayesian cue combination framework, in which separate sources of temporal information are weighted by their reliability and integrated into a unitary time estimate that is more precise than either unisensory estimate. Our results revealed differences in accuracy between auditory, movement, and combined trials, and crucially, that combined trials were the most accurately timed. Under the Bayesian framework, we found that participants’ combined estimates were more precise than isolated estimates in a way that trended towards optimality, while being overall less optimal than the model’s prediction. These findings elucidate previously unknown qualities of conscious motor timing, and proposes computational mechanisms that can describe how movements combine with perceptual signals to create unified, multimodal experiences of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.