The biodiversity of tropical reefs is typified by the interaction between fishes and corals. Despite the importance of this ecological association, coevolutionary patterns between these two animal groups have yet to be critically evaluated. After compiling a large dataset on the prevalence of fish–coral interactions, we found that only a minority of fish species associate strongly with live corals (~5%). Furthermore, we reveal an evolutionary decoupling between fish and coral lineage trajectories. While fish lineages expanded in the Miocene, the bulk of coral diversification occurred in the Pliocene/Pleistocene. Most importantly, we found that coral association did not drive major differences in fish diversification. These results suggest that the Miocene fish diversification is more likely related to the development of novel, wave‐resistant reef structures and their associated ecological opportunities. Macroevolutionary patterns in reef fishes are thus more strongly correlated with the expansion of reefs than with the corals themselves.
Teeth facilitate the acquisition and processing of food in most vertebrates. However, relatively little is known about the functions of the diverse tooth morphologies observed in fishes. Piscivorous fishes (fish-eating fish) are crucial in shaping community structure and rely on their oral teeth to capture and/or process prey. However, how teeth are utilised in capturing and/or processing prey remains unclear. Most studies have determined the function of teeth by assessing morphological traits. The behaviour during feeding however, is seldom quantified. Here, we describe the function of teeth within piscivorous fishes by considering how morphological and behavioural traits interact during prey capture and processing. This was achieved through aquarium-based performance experiments, where prey fish were fed to 12 species of piscivorous fishes. Building on techniques in forensic odontology, we incorporate a novel approach to quantify and categorise bite damage on prey fish that were extracted from piscivore stomachs immediately after being ingested. We then assess the significance of morphological and behavioural traits in determining the extent and severity of damage inflicted on prey fish. Results show that engulfing piscivores capture their prey whole and head-first. Grabbing piscivores capture prey tail-first using their teeth, process them using multiple headshakes and bites, before spitting them out, and then re-capturing prey head-first for ingestion. Prey from engulfers sustained minimal damage, whereas prey from grabbers sustained significant damage to the epaxial musculature. Within grabbers, headshakes were significantly associated with more severe damage categories. Headshaking behaviour damages the locomotive muscles of prey, presumably to prevent escape. Compared to non-pharyngognaths, pharyngognath piscivores inflict significantly greater damage to prey. Overall, when present, oral jaw teeth appear to be crucial for both prey capture and processing (immobilisation) in piscivorous fishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.