Attention models have become a crucial component in neural machine translation (NMT). They are often implicitly or explicitly used to justify the model's decision in generating a specific token but it has not yet been rigorously established to what extent attention is a reliable source of information in NMT. To evaluate the explanatory power of attention for NMT, we examine the possibility of yielding the same prediction but with counterfactual attention models that modify crucial aspects of the trained attention model. Using these counterfactual attention mechanisms we assess the extent to which they still preserve the generation of function and content words in the translation process. Compared to a state of the art attention model, our counterfactual attention models produce 68% of function words and 21% of content words in our German-English dataset. Our experiments demonstrate that attention models by themselves cannot reliably explain the decisions made by a NMT model.
While the attention heatmaps produced by neural machine translation (NMT) models seem insightful, there is little evidence that they reflect a model's true internal reasoning. We provide a measure of faithfulness for NMT based on a variety of stress tests where attention weights which are crucial for prediction are perturbed and the model should alter its predictions if the learned weights are a faithful explanation of the predictions. We show that our proposed faithfulness measure for NMT models can be improved using a novel differentiable objective that rewards faithful behaviour by the model through probability divergence. Our experimental results on multiple language pairs show that our objective function is effective in increasing faithfulness and can lead to a useful analysis of NMT model behaviour and more trustworthy attention heatmaps. Our proposed objective improves faithfulness without reducing the translation quality and has a useful regularization effect on the NMT model and can even improve translation quality in some cases.
User engagement refers to the amount of interaction an instance (e.g., tweet, news, and forum post) achieves. Ranking the items in social media websites based on the amount of user participation in them, can be used in different applications, such as recommender systems. In this paper, we consider a tweet containing a rating for a movie as an instance and focus on ranking the instances of each user based on their engagement, i.e., the total number of retweets and favorites it will gain.For this task, we define several features which can be extracted from the meta-data of each tweet. The features are partitioned into three categories: user-based, movie-based, and tweet-based. We show that in order to obtain good results, features from all categories should be considered. We exploit regression and learning to rank methods to rank the tweets and propose to aggregate the results of regression and learning to rank methods to achieve better performance.We have run our experiments on an extended version of MovieTweeting dataset provided by ACM RecSys Challenge 2014. The results show that learning to rank approach outperforms most of the regression models and the combination can improve the performance significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.